nuclear-news

The News That Matters about the Nuclear Industry Fukushima Chernobyl Mayak Three Mile Island Atomic Testing Radiation Isotope

Fukushima unrecognized threat of radioactive microparticles

hghkmlmùù

Fukushima Microparticles, An Unrecognized Threat

In the years since the initial disaster there have been disparities between the official radiation exposure estimates and the subsequent health problems in Japan. In some cases the estimates were based on faulty or limited early data. Where a better understanding of the exposure levels is known there still remained an anomaly in some of the health problems vs. the exposure dose. Rapid onset cancers also caused concern. The missing piece of the puzzle may be insoluble microparticles from the damaged reactors.
 
What are microparticles ?
These microscopic bits of fuel and other materials from the reactor meltdowns have been found around Japan since soon after the disaster. Citizens with hand held radiation meters first discovered them as highly radioactive fine black sands on roadsides and gutters. These substances eventually caught the attention of researchers who determined they are tiny fused particles of vaporized reactor fuel, meltdown byproducts, structural components of the reactors and sometimes concrete from the reactor containments. The Fukushima microparticles are similar to “fuel fleas” or “hot particles“. Hot particles or fuel fleas have been found at operating nuclear reactors that had damaged fuel assemblies. These fused particles found around Japan are different in that they are a byproduct of the reactor meltdowns.
The small size of these microparticles, smaller than 114 μm makes them an inhalation risk. Other studies have also confirmed the size is small enough to inhale. These microparticles have been found near Fukushima Daiichi, in the evacuation zone, outside of the evacuation zone and as far away as Tokyo.
 
How microparticles were created at Fukushima Daiichi
The heat of the meltdown processes reached temperatures high enough to cause the nuclear fuel and other materials to break down into small particles. The uranium in the fuel further oxidized and then volatilized once temperatures reached 1900K. As these materials broke down into nanoparticle sized components of the fuel melt process, this set up the conditions for them to condense.  As these materials cooled the fused microparticles were created. Newer studies call these microparticles “CsMPs” (Cesium bearing micro particles).  A 2018 study of how these microparticles were created gives a plain language explanation of the process. https://pubs.acs.org/doi/pdf/10.1021/acs.est.7b06309
“From these data, part of the process that the FDNPP fuels experienced during the meltdown can be summarized as the follows: Cooling waters vaporized, and the steam reacted with Zr and Fe forming their oxides after the loss of power to the cooling system. UO2, which is the main composition of fuels, partially oxidized and volatilized at greater than ∼1900 K. (9,10) The fuel assemblies melted unevenly with relatively less irradiated fuels being heated to a higher temperature as compared with the high burnup fuels and volatilized as evidenced by the 235U/238U isotopic ratio.(9) The fuel assembly collapsed and moved to the bottom of RPV. The temperature increased locally to at least greater than 2400 K based on the liquidus temperature of U−Zr oxides. Locally formed oxides melted to a heterogeneous composition, including a small amount of Fe oxides,(27) which then became a source of Fe−U single crystals and U−Zr-oxide eutectic phases. Specifically, euhedral magnetite nanocrystals encapsulated euhedral uraninite nanocrystals, which would have crystallized slowly at this stage. Liquid U−Zr-oxide nanodroplets were rapidly cooled and solidified to a cubic structure. When the molten fuels hit the concrete pedestal of the PCV, SiO gas was generated at the interfaces between the melted core and concrete and instantly condensed to form CsMPs.(5) The U−Zr-oxide nanoparticles or the magnetite nanocrystals subsequently formed aggregates with CsMPs. Finally, the reactor debris fragments were released to the environment along with CsMPs.”
The microparticles may have left the reactors through multiple processes including containment leaks,  containment venting operations, hydrogen explosions and the later reduction and addition of water in an attempt to control the molten fuel.
 
New study looks at how to quantify these substances
A new study found a useful way to quantify how much of the contamination in an area is due to microparticles (hot particles). By using autoradiography they were able to confirm the number of microparticles in a sample. Soil samples near Fukushima Daiichi ranged from 48–318 microparticles per gram.  The microparticles had high concentrations of radioactive cesiums, in the range of ∼1011 Bq/g. The study stresses the health concern that these microparticles pose due to cellular damage from the highly concentrated radiation level. The authors also mention the risk re-suspension of microparticles in the air poses to the public.
Not just cesiums
A separate study found strontium-90 in the Fukushima microparticles at a ratio similar to what has been found in contaminated soil samples. This study included the amount of hot particles (aka: microparticles) found in soil samples taken in the fallout zone in Fukushima north-west of the plant. They ranged from 0-18 microparticles per square meter of soil. This information confirms that strontium-90 is part of some of these fused microparticles. https://academic.oup.com/jrr/advance-article/doi/10.1093/jrr/rry063/5074550
An ongoing research project and paper by Marco Kaltofen documents these hot particles further. In the 2017 paper they found more than 300 such hot particles from Fukushima Daiichi in Japanese samples.  A hot particle was found in a vacuum cleaner bag from Nagoya, over 300 km from the disaster site. https://www.sciencedirect.com/science/article/pii/S0048969717317953?via%3Dihub
“300 individual radioactively-hot particles were identified in samples from Japan; composed of 1% or more of the elements cesium, americium, radium, polonium, thorium, tellurium, or strontium. Some particles reached specific activities in the MBq μg− 1 level and higher.”
The study found americium 241 in two house dust samples from Tokyo and in one from Sendai, 100 km north of the disaster site.  The sample set collected in 2016 showed a similar instance of highly radioactive hot particles compared to the 2011 samples. This appears to show that the threat from these reactor ejected hot particles has not gone away. A majority of the collected samples were from locations declared decontaminated by the national government.
The above graph is from the 2017 Kaltofen paper. These represent the highest readings for cesium found in their microparticle samples. The highest in the graph is Namie black sand. These black sand substances found around Fukushima prefecture and as far south as Tokyo were discovered to be largely made up of ejected reactor materials based on multiple studies.
The 2018 study we cited earlier in this report to explain the microparticle creation process also confirms some of these microparticles also contain radioactive isotopes of uranium. This further confirms the creation of some of these microparticles from the fuel itself. Uranium poses a particular concern due to the extremely long half lives involved.
 
How these act differently in the environment
In the case of the microparticles that contained Strontium 90, the isotope would normally move with water in the environment. Due to the insolubility of the microparticles, the strontium 90 stays in the top soils. Studies on microparticles predominantly carrying radioactive cesiums showed that the radioactive substances did not migrate through the environment as expected.
Microparticles were found in road gutters, sediment that collected in parking lots, below downspouts and similar places where sediments could concentrate. These initial discoveries hint at how the microparticles could migrate through the environment. The findings of the 2017 Kaltofen study indicate that microparticles can persist years later, even in places that were decontaminated. This may be due to the natural processes that have caused many areas to recontaminate after being cleaned up. There has been no effort to clean up forest areas in Japan. Doing so was found to be extremely difficult. The forest runoff may be one method of recontamination.
 
The risk to humans and animals
The subject of hot particles and the risk that they might pose to human or animal health has been controversial in recent years. Some studies found increased risks, others claimed a lesser risk from these substances. One study we reviewed may have discovered the nuances of when these substances are more damaging.
Most studies on hot particles aimed to determine if they were more damaging than that of a uniform radiation exposure to the same body part. A 1988 study by Hoffman et. al. found that hot particle damage varied by the radiation level of the particle, distance to nearby cells and the movement of the particle within the tissue. A high radiation particle might kill all the nearby cells but cause transformation in cells further away. Those dead cells near the hot particle would stimulate the transformed cells to reproduce faster to replace the dead cells. https://academic.oup.com/rpd/article-abstract/22/3/149/161256
A hot particle of moderate radiation would cause more transformations than cell death of nearby cells. High radiation hot particles that moved around in the organ, in this case the lung, would cause the most transformations. These acted like multiple moderate radiation hot particles transforming cells as they moved around. Those transformations are what can turn into cancers. This study’s findings appear to explain the results found in other studies where fewer cancers were found than they expected in certain groups.
A veteran who was exposed during US atomic testing had experience over 300 basal cell carcinomas. The study concluded that the skin cancers in atomic veterans could be induced by their radiation exposure. Continued exposure to ultraviolet radiation then promoted those cancers.
Other studies found damage in animal models. A study of hot particles on pig skin showed roughly half of the exposures caused small skin lesions. Two in the higher exposure group caused infections, one of these resulted in a systemic infection. https://inis.iaea.org/collection/NCLCollectionStore/_Public/28/061/28061202.pdf
A mouse study where hot particles were implanted into the skin found increased cancers of the skin. https://www.tandfonline.com/doi/abs/10.1080/09553009314550501
Workers at Fukushima Daiichi in the group with some of the highest radiation exposures were discovered to have these insoluble microparticles lodged in their lungs. When the workers radiation levels didn’t decrease as expected, further tests were done. Scans found the bulk of the worker’s body contamination was in their lungs. The lung contamination persisted on subsequent scans. The looming concern is that these microparticles in the lungs can not be ejected by the body.
 
Risks have been known for decades 
The US NRC issued an information notice related to a series of hot particle exposures at nuclear plants where workers were exposed beyond legal limits. https://www.nrc.gov/reading-rm/doc-collections/gen-comm/info-notices/1987/in87039.html
Damaged fuel was the source in all cases. Even improperly laundered protective clothing was found to be a risk factor. Contaminated clothing from one facility could make it through the laundry process with a hot particle undetected on bulk scans of finished laundry. This would then result in an exposure to a different worker at a different plant who donned the contaminated gear. The hot particles when in contact with skin can give a high dose rate. Plants with even small fuel assembly leaks saw significant increases in worker exposure levels.
“In addition to any increased risk of cancer, large doses to the skin from hot particles also may produce observable effects such as reddening, hardening, peeling, or ulceration of the skin immediately around the particle. “
These problems are thought to only occur in high dose exposures from hot particles. One worker in the review had an estimated 512 rem radiation exposure from a hot particle.  Workers at US nuclear power plants are subjected to strict screening programs when they exit or return to work. This increases the chance of detecting and removing a hot particle before it can do more damage. This also lessens the potential for one to leave the plant site. The general public exposed to a nuclear plant disaster does not receive this level of scrutiny.
 
How this risk may have played out in Fukushima
Soon after the reactor explosions ripped through Fukushima Daiichi, people in the region began complaining of nosebleeds and flu like symptoms. These eventually began being reported as far south as Chiba and Tokyo.  https://www.aljazeera.com/indepth/features/2011/08/201181665921711896.html
The government responded that these complaints were “hysteria” or people trying to scare others. These problems were so widespread and coming from diverse people it had seemed to be a significant sign in the events that unfolded.
On March 21, 2011 there was rain in Tokyo that may have washed out contamination still being ejected at the plant. Events at Daiichi between March 17-21 caused increased radiation releases.
In 2013 there was an unusual uptick in complaints about severe nosebleeds. This happened at the time typhoon Man-yi made landfall in Tokyo. The bulk of the people who responded to a survey by a foreign policy expert working in the office of a member of Japan’s Diet were from the Kanto region (Tokyo) where the typhoon made landfall.
Children in the Fukushima region that were found to have thyroid problems also complained of frequent nosebleeds and skin rashes.  People have described unusual ongoing health problems such as this woman in Minami Soma near Fukushima Daiichi who had odd rashes, a rapid loss of teeth etc.  Cattle housed 14 km from the disaster site have shown with white spots all over their hides, something previously seen after US nuclear tests. https://www.huffingtonpost.com/evaggelos-vallianatos/the-nuclear-meltdown-at-f_b_4209766.html
The USS Reagan was offshore of Fukushima Daiichi March 11 to 14th. Plume maps for iodine 131 (a gaseous release from the meltdowns) blew in the wind north and at times east out to sea during those dates. These same winds could have carried microparticles out to sea. A number of sailors on the Reagan and those working with the rescue helicopters have fallen ill. Eight have died since the disaster. This newer account of the events on the Reagan raise even more concerns about what happened to those trying to save people after the tsunami.
Namie Mayor, Tamotsu Baba resigned his office in June 2018 after a year of off and on hospitalization. He had been undergoing treatment for gastric cancer. He died a few weeks after resigning. His cancer may have predated the disaster, but in the last year his health drastically declined. Namie is in the area of some of the highest fallout from the disaster.
Fukushima plant manager Masao Yoshida died of esophageal cancer in 2013. TEPCO insisted his cancer was not related to the disaster due to the rapid onset. This is a common claim around cancers that could be tied to Fukushima, yet the number of cancers soon after the disaster has been hard to ignore.
As we neared completion of this report the labor ministry announced that the lung cancer death of a Fukushima Daiichi worker was tied to his work during the disaster. The worker was at the plant during the early months of the disaster and worked there until 2015. TEPCO didn’t give specifics of his work role, only mentioning he took radiation levels. TEPCO mentioned that the worker wore a “full face mask respirator” during his work. All of the workers at Daiichi wore the same after ordered to do so after meltdowns were underway. The worker was not among the highest exposure bracket so he may not have been receiving detailed health monitoring. Radiation exposure monitoring during the early months of the disaster was inconsistent and sometimes missed exposures. https://mainichi.jp/english/articles/20180905/p2a/00m/0na/004000c
 
What microparticles change about the disaster
Highly radioactive microparticles were released to the environment during the meltdowns, explosions and subsequent processes in units 1-3 at Fukushima Daiichi.
Microparticles have been found near the disaster site, in the evacuation zone, far outside of the evacuation zone and south into the Tokyo region. These substances persist in the environment and have been found in areas previously decontaminated.
These microparticles significantly change the exposure estimates for the general public. Individual exposures can not be accurately estimated by the use of generic environmental radiation levels as this does not account for the individual’s exposure to microparticles.
Microparticle exposure has multiple variables that create a unique level of risk to the exposed human or animal. They can in the right circumstances cause significant damage to nearby tissues, persist in the body, cause damage, initiate or promote a cancer.
Microparticle exposures may be the missing puzzle piece that explains a number of odd problems tied to the Fukushima disaster. Health problems that showed up soon after the disaster. Exposed populations with aggressive or sudden cancers and other serious health problems that can be created or exacerbated by radiation exposure.
Microparticles continue to pose a public health risk in some parts of Japan that experienced fallout and increased radiation levels due to the disaster.
Advertisements

September 10, 2018 Posted by | Fukushima 2018 | , , , | Leave a comment

Returnee Fukushima farmers offer taste of rice cultivation in hopes of revitalization

Sustaining the hope of recovery despite the radioactive contamination risk
 
10 june 2018 namie.jpg
University students covered in mud plant rice saplings in a drained paddy in the town of Namie, Fukushima Prefecture, on May 19, 2018.
 
June 10, 2018
FUKUSHIMA — University students and others from around Japan are coming to the farming villages of Fukushima Prefecture where evacuation orders from the 2011 nuclear disaster have been lifted, experiencing rice planting and interacting with local residents who are facing a difficult recovery and population decline.
Organized by local municipal governments and residents, the visits by people from outside the region affected by the Fukushima No. 1 Nuclear Power Plant disaster are providing inspiration to farmers, who have seen less than 20 percent of the pre-disaster farmland planted, and few inheritors to carry on the region’s farming industry.
The laughter echoed over the idle farmland of the Sakata district in the town of Namie, Fukushima Prefecture, as university students and other participants planted rice by hand in a drained paddy on May 19.
“Everyone looks like they’re having fun,” said Namie resident and farmer Kiyoto Matsumoto, 79, with a smile. “Watching them is pretty enjoyable.”
Students started coming to Namie to experience rice planting two years ago. The idea of the event was to have them learn about the current conditions in areas affected by the March 2011 earthquake, tsunami and nuclear disasters, and to link the awareness with the revitalization of the region. On that day, roughly 60 students worked up a sweat in the mud of the rice paddies. The students can also take part in the harvest of the crops and sell the rice at a local festival held in the town in November.
“I really got a feel for how hard farmers work, and I also learned about the lack of successors to take over the farms and other issues,” said an 18-year-old first-timer, a student at Waseda University in Tokyo. Matsumoto hopes that “the young people (who participate) will be able to feel something through experiencing agricultural work.”
In areas where the 2011 evacuation order has been lifted, rice production has once again become possible. The Fukushima Prefectural Government has been testing all rice produced within the prefecture, and there have been no cases where the rice exceeded the standard limit of the radioactive material cesium from 2015-2017. Still, even after the evacuation order was lifted, residents have not been returning to their pre-disaster homes, and with the added influence of an aging population and a lack of successors, there are few farmers who have taken up rice cultivation again. Of the farmland across the five villages and towns of Tomioka, Namie, Iitate, Katsurao and Naraha, the Odaka Ward of the city of Minamisoma and the Yamakiya district of the town of Kawamata, for which evacuation orders were lifted between 2015 and 2017, only between less than 1 percent to 14 percent of the pre-disaster farmland was in use this spring.
In the village of Iitate, 73-year-old farmer Masao Aita also held a rice-planting event on May 19 for adults and students alike that attracted 32 participants. Aita and his wife just returned to the village the month before. The couple had given up on cultivating rice out of concern that they would not be able to sell what they had produced, and planned to plant the fields with tulips and other flowers. However, they were approached by a volunteer group. The group recommended the rice cultivation event.
Aita plans to send the harvested rice to each of the participants and have them give it a taste. “If people from the outside come visit the village, then it is bound to spark something eventually,” he said.
(Japanese original by Shuji Ozaki, Fukushima Bureau)

June 13, 2018 Posted by | Fukushima 2018 | , , , | Leave a comment

Fukushima-Daiichi radioactive particle release was significant says new research

1920_fukushima-crop.jpg
24 May 2018
Scientists say there was a significant release of radioactive particles during the Fukushima-Daiichi nuclear accident.
The researchers identified the contamination using a new method and say if the particles are inhaled they could pose long-term health risks to humans.
The new method allows scientists to quickly count the number of caesium-rich micro-particles in Fukushima soils and quantify the amount of radioactivity associated with these particles.
The research, which was carried out by scientists from Kyushu University, Japan, and The University of Manchester, UK, was published in Environmental Science and Technology.
In the immediate aftermath of the Fukushima Daiichi nuclear accident, it was thought that only volatile, gaseous radionuclides, such as caesium and iodine, were released from the damaged reactors. However, in recent years it has become apparent that small radioactive particles, termed caesium-rich micro-particles, were also released. Scientists have shown that these particles are mainly made of glass, and that they contain significant amounts of radioactive caesium, as well as smaller amounts of other radioisotopes, such as uranium and technetium.
The abundance of these micro-particles in Japanese soils and sediments, and their environmental impact is poorly understood. But the particles are very small and do not dissolve easily, meaning they could pose long-term health risks to humans if inhaled.
Therefore, scientists need to understand how many of the micro-particles are present in Fukushima soils and how much of the soil radioactivity can be attributed to the particles. Until recently, these measurements have proven challenging.
The new method makes use of a technique that is readily available in most Radiochemistry Laboratories called Autoradiography. In the method, an imaging plate is placed over contaminated soil samples covered with a plastic wrap, and the radioactive decay from the soil is recorded as an image on the plate. The image from plate is then read onto a computer.
“We now need to push forward and better understand if caesium micro-particles are abundant throughout not only the exclusion zone, but also elsewhere in the Fukushima prefecture; then we can start to gauge their impact”. 
Dr Gareth Law
The scientists say radioactive decay from the caesium-rich micro particles can be differentiated from other forms of caesium contamination in the soil.
The scientists tested the new method on rice paddy soil samples retrieved from different locations within the Fukushima prefecture. The samples were taken close to (4 km) and far away (40 km) from the damaged nuclear reactors. The new method found caesium-rich micro-particles in all of the samples and showed that the amount of caesium associated with the micro-particles in the soil was much larger than expected.
Dr Satoshi Utsunomiya, Associate Professor at Kyushu University, Japan, and the lead author of the study says “when we first started to find caesium-rich micro-particles in Fukushima soil samples, we thought they would turn out to be relatively rare. Now, using this method, we find there are lots of caesium-rich microparticles in exclusion zone soils and also in the soils collected from outside of the exclusion zone”.
Dr Gareth Law, Senior Lecturer in Analytical Radiochemistry at the University of Manchester and an author on the paper, adds: “Our research indicates that significant amounts of caesium were released from the Fukushima Daiichi reactors in particle form.
“This particle form of caesium behaves differently to the other, more soluble forms of caesium in the environment. We now need to push forward and better understand if caesium micro-particles are abundant throughout not only the exclusion zone, but also elsewhere in the Fukushima prefecture; then we can start to gauge their impact”.
The new method can be easily used by other research teams investigating the environmental impact of the Fukushima Daiichi accident.
Dr Utsunomiya adds: “we hope that our method will allow scientists to quickly measure the abundance of caesium-rich micro-particles at other locations and estimate the amount of caesium radioactivity associated with the particles. This information can then inform cost effective, safe management and clean-up of soils contaminated by the nuclear accident”.
 
The paper, ‘Novel Method of Quantifying Radioactive Cesium-Rich Microparticles (CsMPs) in the Environment from the Fukushima Daiichi Nuclear Power Plant’ has been published in the journal of Environmental Science – DOI:10.1021/acs.est.7b06693
Energy is one of The University of Manchester’s research beacons – examples of pioneering discoveries, interdisciplinary collaboration and cross-sector partnerships that are tackling some of the biggest questions facing the planet. #ResearchBeacons

May 27, 2018 Posted by | Fukushima 2018 | , , , | Leave a comment

Total Denial of the Existing Fukushima Radioactive Contamination for Reconstruction’s Sake

 Fukushima tops national sake competition for record-setting sixth year
n-fukusake-a-20180519-870x526
Officials and brewers from Fukushima Prefecture, including Fukushima Gov. Masao Uchibori (second from right), hold bottles of sake during a photo session Thursday at the prefectural government building in Fukushima City. Fukushima sake brands won the largest number of prizes at the Annual Japan Sake Awards
FUKUSHIMA – Fukushima Prefecture is home to the largest number of award-winning sake brands for the sixth year in a row, marking a record in an annual competition, the National Research Institute of Brewing said Thursday.
Nineteen brands from the prefecture won the Gold Prize at the Annual Japan Sake Awards, matching Hyogo Prefecture for the year’s top spot. Judges, including technical officers from the National Tax Agency and master brewers, chose 232 brands as Gold Prize winners out of 850 brands submitted from across the country.
“We achieved the sixth straight year of victory despite a severe situation due to rumors (about radiation contamination),” Fukushima Gov. Masao Uchibori told a ceremony held in the prefectural government’s head office in the city of Fukushima, referring to the fallout from the March 2011 triple meltdown at Tokyo Electric Power Company Holdings Inc.’s Fukushima No. 1 nuclear power plant.
“I hope to promote the excellent sake produced in Fukushima both in and outside Japan,” he added.
Among Fukushima breweries, Kokken Brewery Co.’s Kokken won the top prize for the 11th year in a row. Higashinihonshuzo Productivity Improvement Cooperative’s Okunomatsu and Nagurayama Sake Brewery Co.’s Nagurayama won for the 10th year.
Aspiring brewer taps Fukushima town’s hops in bid to boost sagging farming industry
n-fukushima-a-20180521_v0.2-870x576
Hop Japan Inc. President Makoto Honma (right) gives advice to a hop producer on how to plant a seedling in Tamura, Fukushima Prefecture.
“I can’t wait to drink delicious beer made from homegrown hops,” Makoto Honma, the president of Hop Japan Inc., told farmers with a smile in April when he visited them in Tamura, Fukushima Prefecture.
While his company was originally intended to focus on the production and sale of homegrown hops, Honma is now planning to build a craft beer brewery in the city amid the recent surge in popularity of locally produced beer and unique brewing methods.
Currently, most domestic hops are grown based on contracts with major breweries, but the production outlook is dim due to a dwindling number of farmers in Japan and falling consumption of big brand beers.
The 52-year-old also believes the realization of his dream would help solve problems related to the abandonment of local farms and revitalize rural tourism.
His brewery dream originates from his experience in the United States a decade ago.
While working as a spokesman for Tohoku Electric Power Co. in 2008, the Yamagata Prefecture native decided to take a two-year leave to study English in Seattle. During his stay, Honma developed a fascination with local craft beer and the brewery business.
In 2014, one of his friends asked him to help in negotiations with producers of Tohoku-grown hops, further piquing his interest in the industry.
Honma said the devastating Great East Japan Earthquake in 2011, and subsequent tsunami and nuclear crisis, had a major impact on his life.
“I want to make hop production sustainable in Tohoku. I would do whatever I can do as we can only live once,” he said, recalling his new outlook on life.
Honma decided to quit his job and launched Hop Japan in Sendai in 2015.
He later learned that Fukushima Bank offers financial aid for startups, leading him to move his company to the city of Fukushima in order to receive the funding.
Honma was later tapped by the Reconstruction Agency to grow hops in Tamura, where farmers sought alternative crops because of the falling production of tobacco leaves.
Tamura officials later asked him to build a brewery in addition to farming hops.
Prompted by the local passion, Honma decided to follow through with the plan, and is set to move to the city by the end of the year, taking further steps toward fulfilling his dream. “By promoting the brewery business, I’d like to realize a society where economic activities from producing and processing to selling, work together in unison,” he said.
This section features topics and issues from Fukushima covered by the Fukushima Minpo, the largest newspaper in the prefecture. The original article was published on May 1.

May 21, 2018 Posted by | Fukushima 2018 | , , , | Leave a comment

Fukushima Disaster Released Uranium, Unexpected Particles

gate of difficult to return zone march 11 2014.pngThe gate of “Difficult-to-return zone” in Fukushima on March 11, 2014

The Fukushima Daiichi nuclear disaster was believed to have only resulted in the release of gases. But seven years after one of history’s few radioactive disasters, scientists have found that uranium and other solid microparticles were also released into the surrounding parts of Japan.

The particles are a fraction of the width of a human hair – which means they could be inhaled, according to the study in the journal Environmental Science Technology.

Our research strongly suggests there is a need for further detailed investigation on Fukushima fuel debris, inside, and potentially outside the nuclear exclusion zone,” said Gareth Law, one of the authors, of the University of Manchester.

The debris, which included uranium, caesium and technetium, was discovered in the nuclear exclusion zone, several kilometers from the epicenter of the disaster at the Fukushima plant.

Two locations were paddy oils, and an abandoned aquaculture center.

Uranium itself has a half-life of 4.5 billion years.

The previously acknowledged radioactive materials were cesium and iodine, both taking the form of volatile gases. Other gases were released, as well.

But the new information about particles potentially means a longer, bigger cleanup, according to the latest study, led by Satoshi Utsunomiya of Kyushu University.

Having better knowledge of the released microparticles is also vitally important as it provides much needed data on the status of the melted nuclear fuels in the damaged reactors,” said Utsunomiya. “This will provide extremely useful information for (The Tokyo Electric Power Company’s) decommissioning strategy.”

The March 2011 Fukushima disaster was triggered by a massive 9.0-scale earthquake, then a 15-foot tsunami. The Daiichi plant lost power, which prevented normal cooling operations – and caused the meltdown of all three cores at the plant within a few days. The removal of the melted fuel – which could take decades – is not going to begin until 2022.

Eighteen thousand people were killed throughout the whole incident, and 100,000 were displaced. The disaster has widely been considered the worst nuclear disaster since the 1986 meltdown at Chernobyl in the Ukraine.

Initial reports indicated that much of the contamination was contained in the aftermath of the 2011 disaster. But coinciding with the fifth anniversary of the meltdown, a report indicated that 10,000 additional cancer cases would be expected in the region of Japan that is most affected. Also in 2015, an American scientist contended that the Fukushima site was uncontrolled, and was leaking radioactive cesium and strontium in the Pacific Ocean. Last year, in advance of the sixth anniversary, the utilities charged with the cleanup announced that decommission of some of the fuel at one of the three damaged reactors had to be delayed, due to increased radiation.

https://www.laboratoryequipment.com/news/2018/03/fukushima-disaster-released-uranium-unexpected-particles-0

March 2, 2018 Posted by | Fukushima 2018 | , , , | Leave a comment

Radiation levels in Fukushima zones higher in 2017 than 2016, and still above government target despite cleanup: Greenpeace Japan

Look how the Japanese media are routinely censoring the news about the Fukushima situation.
In the first article  about the Greenpeace recent report, a short article published in Australia, are clearly stated:
1. Fukushima still has radiation 100 times higher than normal.
2. Greenpeace warned all areas surveyed, including those where people have been allowed to return, had levels of radiation similar to an active nuclear facility “requiring strict controls”, despite the fact that residents had lifted restrictions on access after years of decontamination efforts.
3. “This is public land. Citizens, including children and pregnant women returning to their contaminated homes, are at risk of receiving radiation doses equivalent to one chest X-ray every week.
4. This is unacceptable and a clear violation of their human rights,” Jan Vande Putte with Greenpeace Belgium, and leader of the survey, said.
In the second article about the Greenpeace recent report, a longer article published by the Japan Times in Japan, all those clearly stated 4 points have now disappeared, vanished, having been censored and left out, or spinned down, reduced, minimized such as:
1. “radiation 100 times higher than normal” becomes ” radiation levels higher than the government-set target of 0.23 microsieverts per hour, ranging from 0.2 to 0.8 microsieverts per hour” , meaning 4 times higher than the Japanese government-set target.
This is a typical example that shows you how the Japanese media, unfree from the Japanese government heavy censorship, have been for the past 7 years lying, hiding the true facts of the ongoing yet unsettled nuclear disaster in Fukushima, to the majority of the Japanese population.
n-radiation-a-20180302-870x580.jpg
A member of Greenpeace checks radiation levels in the village of Iitate in Fukushima Prefecture last October. | GREENPEACE / VIA KYODO
March 1, 2018
Fukushima radiation still high: Greenpeace
A new report by Greenpeace says Fukushima, the sight of 2011’s nuclear accident after an earthquake, still has radiation 100 times higher than normal.
Greenpeace says towns in Japan’s Fukushima prefecture, close to the disaster-hit Fukushima Daiichi nuclear power plant, are exposed to excessive levels of radiation.
In a report published on Thursday, Greenpeace warned all areas surveyed, including those where people have been allowed to return, had levels of radiation similar to an active nuclear facility “requiring strict controls”, despite the fact that residents had lifted restrictions on access after years of decontamination efforts.
“This is public land. Citizens, including children and pregnant women returning to their contaminated homes, are at risk of receiving radiation doses equivalent to one chest X-ray every week. This is unacceptable and a clear violation of their human rights,” Jan Vande Putte with Greenpeace Belgium, and leader of the survey, said.
Japanese authorities have said these areas are progressively returning to normality after the massive 9.1-magnitude earthquake and resulting tsunami which struck on March 11, 2011, triggering the nuclear disaster at Fukushima.
The survey said that in the towns of Namie and Iitate, located between 10 and 40 kilometres from the Fukushima Daiichi plant and where evacuation orders were partially lifted in March 2017, radiation levels continue to be “up to 100 times higher than the international limit for public exposure”.
Greenpeace also noted the “ineffectiveness of decontamination work” in these areas, saying there remained a “significant risk to health and safety for any returning evacuee”, adding that Tokyo’s policy of “effectively forcing people to return by ending housing and other financial support is not working”.
The Japanese government had said radiation levels in the reopened zones posed no risk to human health, noting that its data was corroborated by the country’s medical experts and organisations such as the United Nations Scientific Committee on the Effects of Atomic Radiation.
Considered the worst nuclear disaster since the 1986 Chernobyl disaster in Ukraine, the accident at Fukushima displaced tens of thousands of people, caused serious damage to the local economy.
Radiation levels in Fukushima zones higher in 2017 than 2016, and still above government target despite cleanup: Greenpeace Japan
Following the 2011 nuclear crisis, radiation levels at houses and areas nearby in a Fukushima village remain around three times higher than the government target despite cleanup work having been performed, an environmental group has said.
In some areas of the village of Iitate and the town of Namie, levels of radioactivity detected at some points among tens of thousands checked in surveys last September and October were higher than they had been the previous year, Greenpeace Japan said in a report released Thursday.
Most of the six houses surveyed in Iitate, located around 40 kilometers northwest of the crippled Fukushima No. 1 complex, logged radiation levels higher than the government-set target of 0.23 microsieverts per hour, ranging from 0.2 to 0.8 microsieverts per hour.
Some areas in the village had seen radiation levels rise from 2016, Greenpeace said. “There is a possibility (the environment) was contaminated again as radioactive materials that had accumulated in nearby forests may have moved around,” it said.
One house, located near a municipal office with slightly wooded areas nearby, marked lower radiation levels compared with the previous 2016 survey but levels at another five houses — which are near forests that have yet to be cleaned up — have remained almost the same.
The points surveyed covered areas in Iitate and Namie where evacuation orders have been lifted as well as some parts of Namie that remain designated as “difficult to return” zones following the Fukushima nuclear disaster, which was triggered by the massive March 2011 earthquake and tsunami.
The survey also showed that the effects of cleanup work conducted in 2011 and 2012 in the Tsushima district of Namie, located 40 km northwest of the Fukushima plant, had been limited, with one house there logging radiation levels of 5.8 microsieverts per hour at the highest readings and 1.3 microsieverts per hour on average.
The district is among areas designated as special reconstruction zones by the government. The state plans to carry out cleanup work and promote infrastructure development intensively at its expense to make such areas livable again.

March 1, 2018 Posted by | Fukushima 2018 | , , , , , , | 1 Comment

New evidence of nuclear fuel releases found at Fukushima

February 28, 2018
Uranium and other radioactive materials, such as caesium and technetium, have been found in tiny particles released from the damaged Fukushima Daiichi nuclear reactors.
180228092241_1_900x600.jpg
“Our research strongly suggests there is a need for further detailed investigation on Fukushima fuel debris, inside, and potentially outside the nuclear exclusion zone,” said Dr Gareth Law.
 
Uranium and other radioactive materials, such as caesium and technetium, have been found in tiny particles released from the damaged Fukushima Daiichi nuclear reactors.
This could mean the environmental impact from the fallout may last much longer than previously expected according to a new study by a team of international researchers, including scientists from The University of Manchester.
The team says that, for the first time, the fallout of Fukushima Daiichi nuclear reactor fuel debris into the surrounding environment has been “explicitly revealed” by the study.
The scientists have been looking at extremely small pieces of debris, known as micro-particles, which were released into the environment during the initial disaster in 2011. The researchers discovered uranium from nuclear fuel embedded in or associated with caesium-rich micro particles that were emitted from the plant’s reactors during the meltdowns. The particles found measure just five micrometres or less; approximately 20 times smaller than the width of a human hair. The size of the particles means humans could inhale them.
The reactor debris fragments were found inside the nuclear exclusion zone, in paddy soils and at an abandoned aquaculture centre, located several kilometres from the nuclear plant.
It was previously thought that only volatile, gaseous radionuclides such as caesium and iodine were released from the damaged reactors. Now it is becoming clear that small, solid particles were also emitted, and that some of these particles contain very long-lived radionuclides; for example, uranium has a half-life of billions of years.
Dr Gareth Law, Senior Lecturer in Analytical Radiochemistry at the University of Manchester and an author on the paper, says: “Our research strongly suggests there is a need for further detailed investigation on Fukushima fuel debris, inside, and potentially outside the nuclear exclusion zone. Whilst it is extremely difficult to get samples from such an inhospitable environment, further work will enhance our understanding of the long-term behaviour of the fuel debris nano-particles and their impact.”
The Tokyo Electric Power Company (TEPCO) is currently responsible for the clean-up and decommissioning process at the Fukushima Daiichi site and in the surrounding exclusion zone. Dr Satoshi Utsunomiya, Associate Professor at Kyushu University (Japan) led the study.
He added: “Having better knowledge of the released microparticles is also vitally important as it provides much needed data on the status of the melted nuclear fuels in the damaged reactors. This will provide extremely useful information for TEPCO’s decommissioning strategy.”
At present, chemical data on the fuel debris located within the damaged nuclear reactors is impossible to get due to the high levels of radiation. The microparticles found by the international team of researchers will provide vital clues on the decommissioning challenges that lie ahead.
 
Story Source:
Materials provided by Manchester University. Note: Content may be edited for style and length.
 
Journal Reference:
1. Asumi Ochiai, Junpei Imoto, Mizuki Suetake, Tatsuki Komiya, Genki Furuki, Ryohei Ikehara, Shinya Yamasaki, Gareth T. W. Law, Toshihiko Ohnuki, Bernd Grambow, Rodney C. Ewing, Satoshi Utsunomiya. Uranium Dioxides and Debris Fragments Released to the Environment with Cesium-Rich Microparticles from the Fukushima Daiichi Nuclear Power Plant. Environmental Science & Technology, 2018; DOI: 10.1021/acs.est.7b06309
 

 

March 1, 2018 Posted by | Fukushima 2018 | , , , | Leave a comment

South Koreans still distrustful of Japanese fish products after nuclear meltdown

AEN20180126000900320_01_i.jpg
SEOUL, Jan. 26 (Yonhap) — A majority of South Koreans favor banning the import of Japanese fishery products, a survey showed Friday, underscoring lingering safety concerns about possible radioactive contamination.
Radioactive water leaked following the meltdown at Japan’s Fukushima nuclear power plant in 2011.
The Consumers Union of Korea polled 1,023 adults across the country last year, and the results showed 55.3 percent want stronger import restrictions. Another 37.2 percent said the restrictions should be “very heavy.”
 
   The results of the survey were released by opposition lawmaker Choi Do-ja, who obtained them from the Ministry of Food and Drug Safety.
South Korea prohibited imports of agricultural and fish products from Fukushima and its adjacent areas after radioactive leaks following the 2011 tsunami disaster in Japan.
In 2013, Seoul took a stronger measure to ban imports from fisheries in eight other Japanese prefectures near Fukushima.
Japan took the case to the World Trade Organization, accusing South Korea of discriminating against its exports. The ruling is scheduled in the first half of this year.
According to the survey, 45.5 percent want a complete import ban on all Japanese foods, while 39.6 percent said they want at least a full ban on select products from certain prefectures.
Results showed that 55.3 percent of South Koreans are not buying fish products from Japan. Other shunned items included agricultural products (56.3 percent), dairy products (52.8 percent), cosmetics and processed foods (37.5 percent) and other manufactured goods (35.3 percent).
Among people who said they either do not buy Japanese fishery products or have cut back on such purchases, 79.2 percent said the reason was because they do not feel safe. In addition, 59.2 percent said they will not buy fish from Japan even when there is no trace of radioactive contamination.
The biggest concerns from radioactive exposure included cancer (42.4 percent), newborns with deformities (30.4 percent) and hereditary disease (13.4 percent).
“It has been seven years since the Fukushima accident, but people are still worried about fishery products from Japan,” Rep. Choi said. “There has to be more effort to allay these concerns through imports limits and thorough inspection of radioactive traces in foods.”

January 26, 2018 Posted by | Fukushima 2018 | , , , , | Leave a comment

Population Oscillations OR Collapsing Ecosystem

From Majia’s Blog :
hjklùù.jpg
The ongoing collapse of King Salmon in Alaska is once again in the news:
Nathaniel Herz (2017, Dec 29). Southeast Alaska’s king salmon are disappearing, and fishermen are grappling with the consequences. Anchorage Daily News. Available https://www.adn.com/business-economy/2017/12/28/southeast-alaskas-king-salmon-are-disappearing-and-fishermen-are-grappling-with-the-consequences/
…There’s some sense that climate change could be causing a “regime shift” and a long-term change in ecosystems, said Peter Hagen, deputy director of a federal fisheries laboratory in Auke Bay, near Juneau.
 
“There’s a whole question: Is this a new normal? And I don’t think we’ve determined that yet,” Hagen said.
 
But Hagen and Adkison, the fisheries professor, both pointed out that salmon have proven to be resilient. Fossil records show that big population changes are typical, Adkison said.
 
“In the salmon business, we’re used to these dramatic fluctuations in productivity,” he said. “If I had to bet, I would favor the short-term fluctuation and I would expect them to eventually rebound. But the current numbers are really low.”
I’ve been following the (reported) acceleration of excess mortality events among animal populations. Here is my 2012 post on the King Salmon that “went missing” that year:
In 2013 I created a compilation of news headlines and links addressing what I called “anomal anomalies,” as documented here in this 2013 post:
 
Polar bears, walruses, salmon, sardines, starfish, etc. These and so many other marine and land animal populations experienced precipitous declines due to “inexplicable” wasting syndromes and odd infections that began being reported in great number in 2012.
 
[when I checked on bee and bat declines I discovered that the Wikipedia article attributes the rapid decline in bats from white fungal disease to 2012 here. In contrast, bee “colony collapse disorder” was named in 2006]
 
Every animal population imperiled has no doubt suffered in complex ways from human engineering and thoughtlessness, including experiences of habitat loss and rapid deterioration of remaining habitats due to the synergistic effects of countless environmental assaults.
 
Still, I find it more than coincidental that the acceleration of mass mortality events became markedly evident in 2012.
 
Fukushima’s ongoing and UNPRECEDENTED RADIOACTIVE CONTAMINATION of the ocean and the general dispersal of industrial pollutants by the Japan’s terrible 2011 tsunami ARE STRANGELY ABSENT from most all news coverage of marine welfare.
 
Yet, ALL THE SCIENTIFIC DATA available, including data generated by the US Geological Survey and the CTBTO, documented widespread fallout contamination in North America.
 
Scientific models on ocean dispersion predicted a plume of radioactive contamination would reach North America and add to the coastal fallout from precipitation by 2013. This prediction was tested and found to be true in San Diego, CA.
 
Fukushima’s ongoing dissemination of radioactive contamination has lessened since 2012 but it has not ceased.
 
I’m sure that Fukushima isn’t the only source of radioactive contamination from artificially engineered radio-isotopes such as Cesium-137 and Strontium-89 but it is the largest known.
 
Might it represent a tipping point in ocean life? That question will probably never be answerable empirically because not enough research is investigating impacts.
 
What is clear however is that the accelerated decimation of animal life on earth will not occur without grave human losses as well. It is my belief that when we destroy the eco-system upon which we depend, we are destroying ourselves.
 
Unfortunately, our capacity to grapple with the spectre of our destruction is impeded by our capacity to rationalize.
 
The idea of “population oscillations” is the rationalization deployed most often to account for the dislocations in ecological life observed by scientists and everyday people in touch with their environments.
 
Populations don’t simply oscillate by chance. Numbers drop and decline in relation to the contingencies of system-environment interactions. Precipitous declines typically result from amplifying feedback loops, often resulting from either over-population or some dramatic change in the environment, such as a sudden and unprecedented onslaught of marine contamination.
 
RELATED POSTS
 
 
 
Bioaccumulation: Cesium is One Among the 1000 Radionuclides Unleashed by Fukushima Bioaccumulation: http://majiasblog.blogspot.com/2014/11/bioaccumulation-cesium-is-one-among.html
 
Contaminated Water at Fukushima Daiichi Majia’s Blog: http://majiasblog.blogspot.com/2014/02/contaminated-water-at-fukushima-daiichi.html
 
Will Fukushima Daiichi Kill Vast Swathes of Ocean life Majia’s Blog: http://majiasblog.blogspot.com/2014/01/will-fukushima-daiichi-kill-vast.html
 
Endless Atmospheric and Ocean Emissions Majia’s Blog: http://majiasblog.blogspot.com/2014/08/endless-atmospheric-and-ocean-emissions.html
 
 
 
Humanity’s End Foretold in Destruction of Oceans: Majia’s Blog: Humanity’s End Foretold in Destruction of Oceans
 
Compromised Oceans mean Compromised People: Majia’s Blog: http://majiasblog.blogspot.com/2012/10/humanitys-end-foretold-in-destruction.html
 
Radiation plumes headed to N. America Majia’s Blog: http://majiasblog.blogspot.com/2013/01/fukushima-radiation-plumes-in-ocean.html

January 3, 2018 Posted by | Fukushima 2018 | , , , , | 1 Comment

Fears of children who have to check radiation levels outside before they can go and play

The main problem is internal radiation thru food and drinking, which in this article is not enough emphasized. Plus there is no safe level of manmade radiation.
they say that food.jpg
Almost seven years after the Fukushima disaster, staff are forced to check if schoolyards are too poisonous to play
1.jpg
Pupils have to scan their school playground
Children are still using Geiger counters to test for deadly radiation levels at schools struck by the Fukushima disaster in Japan.
Almost seven years after the worst nuclear meltdown in decades, staff are forced to check if schoolyards are too poisonous to play.
A large Geiger counter in their playground measures the invisible threat still hanging over them after the nearby nuclear plant was hit by an earthquake and engulfed by the ensuing tsunami.
If radiation readings are too high, the children are told they cannot go outside.
Students even have their own handheld devices to check for themselves if schoolyards are too poisonous to play in.
One, 13-year-old Yume, admits what many others also feel. “I’m afraid I’m going to get cancer,” she says bluntly.
Her classmate Mei adds: “Some of the playgrounds near here have been shut – the radiation is too high.”
2.jpg
Device shows readings equal to having a chest x-ray
3.jpg
Explosion at the Fukushima No. 1 nuclear power station on March 14, 2011
The disaster in March 2011 was the worst nuclear incident in 30 years. Now students spend lessons scanning their school and plotting hotspots on a map back in class.
Ryu, 13, explained: “The trees are where the highest readings are. We picked up 0.23 last month.”
That level is double the 0.1 millisieverts patients face during a chest X-ray, or equal to 50 scans at the dentist.
While those last just seconds, these children are exposed constantly. The Japanese government has declared Fukushima safe, with a 20-mile no-go zone around the crippled power station itself.
Science teacher Takahira Abe, 52, leads workshops designed by Save the Children to educate about the dangers.
He said: “Fukushima will be a shadow these children live with for the rest of their lives. Most were so young life seems normal, but often when we teach them about radiation they get flashbacks.”
4.jpg
Kids in the area are more likely to get cancer
5.jpg
Science teacher Takahira Abe
They are taught about monitoring radiation in local crops and fish.
Mr Abe explains: “I want them to understand the risks – and that they are more likely to get cancers. It gives them tools to protect against further dangers.”
After the disaster Mr Abe and his wife Hiromi decided not to flee – despite protests from their son and daughter, then nine and 13. He said: “The school had a geiger counter for science, so I took readings. Levels were not too high.
“My duties as a teacher were more important. I had to stay and educate others.”
His textbook was created by Save the Children to help those living under a radiation threat. And counsellors have been brought in to help deal with mental health issues.
Mr Abe adds: “That’s one positive – we’re encouraging children to talk openly. That’s not happened before in Japan.”

they say that food.jpg

December 31, 2017 Posted by | Fukushima 2017 | , , | Leave a comment

The Japanese Government Is Lying to the International Community: the Radiological Situation in and around Fukushima is NOT Safe

A report from NIRS (Nuclear Information and Resource Service, in USA)
The Japanese government has created foreign language websites which provide the information about radiology in general and the radiological situation in Fukushima. Journalists around the world, our friends and acquaintances living abroad are continually asking us whether the information that these Japanese central and local government websites present to the international community is correct or not. The following is our answer.
 
Appeal from a Japanese Anti-nuclear Activist Etsuji Watanabe
Nov.29 2017 Revised (Oct.12 2017)
Etsuji Watanabe: Member of the Japanese anti-radiation citizen-scientist group ACSIR (Association for Citizens and Scientists Concerned about Internal Radiation Exposures)
Special thanks to Mrs Yuko Kato, Mr Ruiwen Song, Ms Nozomi Ishizu, Mrs Kurly Burch, Ms Jennifer Alpern, and Mark Bennett Yuko Kato: Evacuee from Fukushima, member of the Kansai plaintiff group for compensation against TEPCO and government Ruiwen Song: Taiwanese freelance journalist.
The Japanese government has created foreign language websites which provide the information about radiology in general and the radiological situation in Fukushima. Journalists around the world, our friends and acquaintances living abroad are continually asking us whether the information that these Japanese central and local government websites present to the international community is correct or not. The following is our answer.
 pic-1.png
[Question 1]
The stories uploaded on these websites give people the impression that worrying about radiation is unnecessary. As for this impression, has Fukushima now really become a safe place to live or visit?
[Answer]
First of all, Japanese anti-nuclear activists and evacuees from contaminated areas in Fukushima and Kanto, have been warning people all over the world NEVER to trust what the Japanese government is saying about both radiology in general and the specific radiological health effects caused by the Fukushima Dai-ichi nuclear power plant disaster (hereafter Fukushima accident) following the Great East Japan Earthquake and Tsunami on March 11th, 2011.
Prime-minister Shinzo Abe and the Japanese government as a whole including Fukushima prefectural government have repeatedly declared that “with regard to health-related problems (of the Fukushima accident), I (Abe) will state in the most emphatic and unequivocal terms that there have been no problems until now, nor are there any at present, nor will there be in the future.” (Abe’s statement at a news conference). See the Japanese government website here.
This claim is completely fabricated and false. In making these claims, the Japanese government is blatantly ignoring the vast number of studies in radiological sciences and epidemiology that have been accumulating historically. By engaging in this behavior, the Japanese government has been systematically deceiving the public, both nationally and internationally.
Just think of the amount of radioactivity released during the Fukushima accident. As you know, one of the standards used to assess the extent of radioactive releases and longtime human health effects is the levels of cesium 137 (Cs137) released into the environment. Based on the Japanese government data (which is an underestimate), the Fukushima accident released 168 times the Cs137 discharged by the atomic bomb dropped on Hiroshima. This amount is almost the equivalent to the total atmospheric nuclear explosions conducted by the United States on the Nevada test ground. The Nevada desert is not designated as a residential area, but the Japanese government has recommended evacuated residents return to live in areas with radiation levels of up to 20 mSv/year. By removing economic support for evacuees, the Japanese government has forced many people who had evacuated from these areas to return.
We estimate that in the Fukushima accident approximately 400-600 times the Cs137 were released into the atmosphere by the atomic bomb blast in Hiroshima. Roughly 20% of the Cs137, or 80-120 Hiroshima-equivalents, were deposited on Japan. Of this, the decontamination efforts have only been able to retrieve five Hiroshima-equivalents. The waste from decontamination efforts is typically stored all over Fukushima mostly in mountainous heaps of large plastic bags. This means that 75-115 Hiroshima-equivalents of Cs137 still remain in Fukushima, surrounding prefectures, and all over Japan.
In addition, the Japanese government is now planning to reuse the retrieved contaminated soil under 8000Bq/kg in public works projects all over Japan. This self-destructive program has now been partially started without any announcements as to where the contaminated soil are and will be reused, under the pretext of “avoiding damage caused by harmful rumors”. This project is tantamount to scattering lethal fallout of Cs137 equivalent to about 5 times that of Hiroshima bomb all over Japan. The Japanese government is literally behaving like a nuclear terrorist.
Do you really imagine that Fukushima prefecture and surrounding areas, contaminated as they are to levels similar to the Nevada test site, is really a safe place for people to permanently live, or for foreign tourists to visit and go sightseeing?
Regrettably, we must conclude that it is not, for either residents or tourists the situation in Fukushima is not safe.
 pic-2.png
[Question 2]
These websites also point out that the international annual dose limit for the public is at 1mSv, but this level is easily exceeded by only one CT-scan, insinuating that this 1mSv standard is set too low and thus not a useful indicator.
[Answer]
CT-Scans are often cited as if they had no radiation risks, But this is not true. A recent study clearly shows that every CT-scan (about 4.5mSv irradiation) increases the risk of cancers in children by 24%. See the website here.
In Fukushima the allowable level of radiation per year for residents is now 20mSv. Can you imagine having 4-5 CT-scans every year?
 pic-3.png
[Question 3]
One of the websites states: “In Fukushima, the indoor radiation doses are now so reduced that no radioactive cesium can be found in the air. Therefore, no radioactive particles can invade the human body during breathing.” What do you think of this statement?
[Answer]
The Japanese government also ignores the long-term peril caused by “hot particles” ――micron-and- nano-sized radioactive particulates――which, if inhaled or absorbed into the human body, may lead to many kinds of cancers and other diseases including cardiac failure. We should consider internal irradiation to the cells near the radiation sources to be 500 times more dangerous than external irradiation because particles inside the body radiates very near or even inside cells, causing intensive damage to DNAs and other cell organs such as mitochondria.
 
[Question 4]
These websites explain that there exists not only artificial but also natural radioactivity, thus people are living in an environment surrounded by radiation all the time in everyday life.
[Answer]
One of the main tactics that the Japanese government often uses to propagate the “safety of low level irradiation” is to compare artificial radioactivity with natural radioactivity. But this logic is a methodological sleight of hand. It is crystal-clear that even exposure to natural radioactivity has its own health risks. Cancers sickened and killed people long before artificial radioactivity was used. For example, Seishu Hanaoka, one of the founders of Japan’s medicine, carried out 152 breast cancer surgeries from 1804 to 1836.
Both kinds of radioactivity have their own health risks. Risks caused by artificial radioactivity should not be compared but be added to the natural radioactivity risks as they both lead to the accumulation of exposure.
For example, potassium 40 (K40) is a typical natural radioactive nuclide. According to  the Japanese government, the average internal exposure dose for adults from K40 is about 4,000Bq/year or 0.17mSv/year. See the website here (in Japanese).
The ICRP risk model (2007) allows us to estimate the approximate risk posed by K40. The calculation shows that K40 is responsible for approximately 4,000 cancer cases and 1,000 deaths every year. If the same amount of radiation was added to that of K40 in the human body by artificial sources, the cancers and mortalities would be doubled to 8,000 and 2,000 a year, respectively. Based on the ECRR (2010) model, which criticizes the ICRP risk model as a severe underestimate, these figures should be multiplied by 40, reaching 320,000 and 80,000, respectively.
The extract you cite from the Fukushima government website is completely fake: “In Fukushima, the indoor radiation doses are now so reduced that no radioactive cesium can be found in the air. Therefore, no radioactive particles can invade the human body during respiration”. Reports from civic radiation measurement stations refute this claim. For example, dust collecting paper packs of vacuum cleaners used in Iwaki City, Fukushima prefecture, are radiologically measured and 4,800-53,900Bq/kg radioactive cesium was detected in Oct-Dec 2015. See the website here (in Japanese).
 
[Question 5]
One of the websites says that the Fukushima prefecture has conducted whole-body counter screenings of the 170,000 local population so far but cesium was rarely detected.” Does this mean that we can safely consume food from Fukushima, and Fukushima residents are no longer being exposed internally to radiation?
[Answer]
This is a typical example of demagogy by the Japanese government: vague expressions lacking specific data, using the words “safe and secure” without clear explanation. In reality, the government has not publicized any data indicating serious irradiation of the population. For example, you mentioned the Fukushima prefectural government website saying that whole-body counter screenings of 170,000 members of the local population have found radioactive Cs only in very few cases. However, the fact that no specific number is given makes the statement suspicious.
These statistics, more than likely, exclude many firefighters or other municipal employees who, at the time of accident, helped local residents evacuate from a lot of contaminated areas surrounding the defunct Fukushima plant. These people were subjected to serious radiation doses.
Civic groups’ efforts for the disclosure of information has recently prompted city officials near the defunct plant to disclose the fact that it conducted whole-body counter check-ups on about 180 firefighters, nurses and municipal employees. According to Koichi Ohyama, a member of the municipal assembly of Minami Soma, the screening conducted in July, 2011, showed almost all of these people tested positive in Cs. The maximum Cs137 dose among the firefighters was as high as 140,000 Bq. This data reveals a part of the reality of irradiation but it is only a tiny part.
 pic-4.png
[Question 6]
The government websites suggest that no health effects from irradiation have been reported in Fukushima. Is this true? Or have any symptoms appeared that indicate an increase in radiation-induced diseases in Fukushima?
[Answer]
One example is the outbreak of child thyroid cancer, but the Japanese government has been denying the relationship with irradiation from radioactive iodine released from the Fukushima disaster.
Japan’s population statistics reflect the health effects from the Fukushima disaster radioactivity. The following data clearly show that diseases increasing in Fukushima are highly likely to have been radiation-induced.
pic-5-768x597.png
[Question 7]
The Fukushima prefecture website says, “After the Fukushima accident, the Japanese government has introduced the provisional standards for radioactive iodine and cesium. The Fukushima prefectural government subsequently strictly regulated distribution and consumption of food with levels of radioactivity exceeding the provisional standards. Now we have had this new much stricter standard. The distribution and consumption  of food exceeding this new standard has been continuously regulated; therefore any food on the market is safe to consume.” Is it true?
[Answer]
As for food contamination, the Japanese government has also tried to cover up the real picture. First, the current government standard for radioactivity in food, 100Bq/kg, is dangerously high for human health, especially for fetuses, infants, children and pregnant women. Even six and a half years after the accident, the Agriculture Ministry of Japan as well as many civic radioactivity measurement stations all over the country have reported many food contamination cases, although the frequency is evidently reduced. See the website here.
The Japanese government has underestimated the danger presented by internal irradiation. But, we must consider two important factors. (1) The wide range of difference in personal radio-sensitivity. According to Professor Tadashi Hongyo (Osaka University Medical Faculty), the maximum difference is as wide as 100 times in terms of biological half-life of Cs137. (2) Recent studies denying that the so-called biological half-life decrease curve actually exists. According to the new model, daily food contamination can cause concentrations to accumulate as time passes. Even a daily 1Bq internal radiation dose from food cannot be safe for human health (details below).
Our recommendation is to be cautious of food or produce from Fukushima and the surrounding areas, and, even if contamination levels are said to have now generally decreased, to avoid jumping to the conclusion that all the food is fit to eat.
 
pic-6.png
[Question 8]
We would like to ask about the situations in prefectures surrounding Fukushima. A television program once reported, “As for the safety of Tochigi and Gunma prefectures, few people are raising concern about health effects of radiation.” Is it true that the prefectures somewhat distant from the Fukushima Daiichi plant are now safe with no human risk?
[Answer]
Regarding the radioactive contamination in prefectures surrounding Fukushima, you can refer to the following website.
This article examines the contamination in the Tokyo metropolitan area, but conditions are the same or more serious in Tochigi or other prefectures north of Tokyo, nearer to the defunct Fukushima Daiichi plant.
Another example is the statistics of stillbirth and neonatal mortality in Fukushima and the surrounding five prefectures (Tochigi, Gunma, Ibaragi, Miyagi, Iwate) shown here.
Perinatal mortality in not only Fukushima prefecture but also neighboring prefectures rose 15.6% just 10 months after the accidents. This clearly indicates the existence of some kind of human health damage from radiation.
pic-7.png
[Question 9]
We would like to ask about the decontamination efforts by famers living in Fukushima and neighboring prefectures. Should we think highly of the farmers measuring the amount of radiation deposited on the surface of soil to create radiation maps for farms, or washing the radiation from the surface of every single tree off the radiation with high-pressure washers? The farmers said that while these methods have been shown to be radiologically effective, their produce did not sell well, because consumers are still feeling anxious about health risks. Does the problem of radioactive food contamination in Japan just end up in whether each consumer personally believes it safe or not?
[Answer]
We must raise a question that, despite the government’s decontamination efforts, a huge amount of radioactive materials deposited in mountainous areas remain untouched. Now they are re-dispersing and re-depositing over wide areas of Fukushima and surrounding prefectures via winds, cars, trains, river water, pollen, spores, emissions from incinerators, in the form of radioactive dusts and particulates, among many others. For an example, see the following website.
So I regret to say that, although these farmers’ endeavors you mentioned are very precious and respectable, they are not sufficient to completely eliminate the risk of radiation exposure from food. The problem exists objectively in the nuclear materials deposited on and in soil, algae, plants, houses, buildings, forests, animal and human bodies, not subjectively in the consumers’ sentiment or psychology.
 pic-8-768x463.png
[Question 10]
Japanese experts have recently pitched a cultivation method that can remove cesium by intensive use of potassium fertilizer. Is this method effective at all? Do you have any doubt about their claims?
[Answer]
They seem to be among those experts who have been criticizing the general public’s tendency to demand “zero irradiation risk” as an obstacle to Fukushima reconstruction.
As you know, cesium (Cs) has chemically similar characteristics to potassium (K). So it is true that higher levels of application of potassium fertilizer lowers the plant’s absorption, and therefore concentration, of radioactive Cs, decreasing Cs137/134 concentrations in produce, often to below the government standard of 100Bq/kg. But the following problems remain: (1) This procedure can prevent Cs transfer from the soil to produce only partly, not completely; (2) This process raises the potassium concentration in the produce and therefore heightens the burdens on certain human organs such as kidneys, the heart and the nervous system, causing new health risks; (3) Heightened concentration of potassium also leads to the heightened concentration of radioactive K40, so the reduced risk of radioactive Cs lead to an increased risk of internal irradiation by K40.
 
[Question 11]
Even if cesium concentration was reduced by applying more potassium fertilizer than usual, strontium contamination would remain. In Japanese government’s international press campaign as to the Fukushima accident, almost nothing has been said about strontium. If you have any information on strontium contamination, let us know.
[Answer]
We regret that the information about strontium that you are asking for is very limited and searching for it is also a challenge for us. The Japanese government and research institutes under the government have reported very limited data regarding strontium contamination. But it is important that the Japanese government admits the fact of strontium contamination within 80km from the defunct Fukushima plant. See the website here.
Did you know that the US Department of Energy data on the strontium contamination of soil in Japan and its visualization (in Japanese)  can be seen on the websites here?
 
[Question 12]
Some Japanese experts say, “the Japanese government has declared that no health effects from irradiation below 100mSv (or 100mSv/year) have been confirmed.” Some farmers have established a private food standard of 20Bq/kg, much lower than the Japanese government standard of 100Bq/kg. Do you think that doses under 100mSv or under 20Bq/kg are safe and secure?
[Answer]
As you mentioned, the Japanese government claims that no scientific studies verify that irradiation of 100mSv or less poses a threat to human health, suggesting that irradiation under 100mSv has no risk. This, however, is false. The government is fabricating this information. In fact, very many scientific studies have already confirmed and proven health effects induced by irradiation under 100mSv. For example, see the websites below.
 
The Japanese government is using the term “100mSv” in a deliberately ambiguous and confusing manner. The expression 100mSv can have three meanings: (1) a one-time irradiation dose, (2) cumulative irradiation doses, or (3) annual irradiation doses. So 100mSv is not the same as, nor equal to the 100mSv/year that you mentioned in parenthesis. The latter amounts to a 1Sv in cumulative dose over 10 years (which is an up to 10% lethal dose), and 5Sv over 50 years (which is a 50% lethal dose). The present government standard for evacuees to return, 20mSv/year, means that living there for 5 years leads to a cumulative dose of 100mSv, at which the Japanese government admits clear health risks.
Regarding 20Bq/kg as some farmers’ private food standard, it is critical to pay serious attention to the extraction process of Cs from tissues. Japanese-Canadian non-organic biochemist Eiichiro Ochiai points out in his book “Hiroshima to Fukushima, Biohazards of Radiation” (2014) that, based on the Leggett model, the Cs concentration injected in tissues at one time diminishes relatively quickly for about 10 days in most tissues. After that, processes slow down, tending to become steady. He writes: the decrease of the overall Cs level in the body does not follow an exponential decay curve (p.83). This means that consecutive intake of Cs, even in very low levels, results in the accumulation of Cs in the body. (Incidentally, Ochiai’s book can be downloaded for free from the website below.)
Regarding the Leggett model, see the website below.
Yuri Bandazhevsky considers over 10Bq/kg of radioactive Cs concentrations in the body to be unsafe because even this low level can possibly cause abnormal electrocardiographic pattern in babies, metabolic disorders, high blood pressure, cataracts, and so on.
Therefore, we can conclude unequivocally that neither the irradiation under 100mSv nor the privately set 20Bq/kg food standard are safe and secure.
PDF Download

December 1, 2017 Posted by | Fukushima 2017 | , , , , , | 1 Comment

A book “Radiation Brain Moms and Citizen Scientists: The Gender Politics of Food Contamination after Fukushima”

978-0-8223-6199-2_pr
By Kimura Aya Hirata (August 2016)
Description
Following the Fukushima Daiichi Nuclear Power Plant disaster in 2011 many concerned citizens—particularly mothers—were unconvinced by the Japanese government’s assurances that the country’s food supply was safe. They took matters into their own hands, collecting their own scientific data that revealed radiation-contaminated food. In Radiation Brain Moms and Citizen Scientists Aya Hirata Kimura shows how, instead of being praised for their concern about their communities’ health and safety, they faced stiff social sanctions, which dismissed their results by attributing them to the work of irrational and rumor-spreading women who lacked scientific knowledge. These citizen scientists were unsuccessful at gaining political traction, as they were constrained by neoliberal and traditional gender ideologies that dictated how private citizens—especially women—should act. By highlighting the challenges these citizen scientists faced, Kimura provides insights into the complicated relationship between science, foodways, gender, and politics in post-Fukushima Japan and beyond.
About The Author(s)
Aya Hirata Kimura is Associate Professor of Women’s Studies at the University of Hawai’i at Manoa and the author of Hidden Hunger: Gender and Politics of Smarter Foods.

November 17, 2017 Posted by | Fukushima 2017 | , , , , | Leave a comment

1,700 Contaminated Vehicles Removed from Fukushima Daiichi Plant Site

Excessive radiation detected in vehicles removed from Fukushima nuke plant

Some of the cars were sold on the used-car market while two others remain unaccounted for, according to plant operator Tokyo Electric Power Co.

Radiation topping the government-set limit has been detected in about 190 vehicles removed from the premises of the Fukushima No. 1 Nuclear Power Plant after the outbreak of the nuclear crisis, it has been learned.

Some of the cars were sold on the used-car market while two others remain unaccounted for, according to plant operator Tokyo Electric Power Co. (TEPCO).

Approximately 1,700 vehicles were parked on the premises of the power station when the nuclear crisis broke out after it was hit by the powerful earthquake and tsunami on March 11, 2011, TEPCO officials said. Of those, about 600 were owned by employees of TEPCO or companies contracted by the utility. Over a 12-day period until radiation screenings began on March 23 of that year, people could drive the vehicles out of the premises of the plant without checks.

The Economy, Trade and Industry Ministry instructed TEPCO in February 2012 to conduct a follow-up probe into the use of these vehicles for fear that next owners of those cars could be exposed to radiation without knowing that the vehicles were contaminated.

The power company conducted a survey on employees and contracted companies that parked their cars on the plant’s premises at the time of the accident, and confirmed that about 460 vehicles were brought out of the plant by April 2015. It was learned that radiation levels for around 190 of the vehicles exceeded government-set safety standards, and some of them were found contaminated with radiation nearly 10 times over the limit. All the vehicles whose radiation levels exceeded the limit were collected from their owners and are now stored on TEPCO’s premises situated in a Fukushima Prefecture area designated as a highly contaminated “difficult-to-return zone.”

TEPCO is considering how to dispose of these heavily contaminated vehicles, with an official saying, “We’d like to continue searching for two vehicles that remain unaccounted for and respond to the situation in an appropriate manner.”

http://mainichi.jp/english/articles/20170809/p2a/00m/0na/013000c

Tainted cars left Fukushima compound unchecked

The operator of the Fukushima Daiichi nuclear power plant says hundreds of vehicles contaminated with radioactive substances left the compound unchecked in the immediate aftermath of the 2011 accident.
Tokyo Electric Power Company says that in 2012 it began investigating what had happened to privately owned vehicles at the plant, and found that about 460 had left the compound.
TEPCO officials located most of them by 2015. About 190 registered radiation levels that were higher than the government standards. They managed to track down all 190, but some of them had been sold to new owners.
Some of the cars were so contaminated that the radiation couldn’t be measured by equipment capable of detecting levels nearly 10 times greater than the official limits.
Two vehicles remain unaccounted for.
TEPCO says it did not conduct radiation checks of cars leaving the compound for 12 days after the accident started on March 11th, 2011.
The company has apologized for causing concern and says it will keep trying to locate the 2 vehicles.

https://www3.nhk.or.jp/nhkworld/en/news/20170809_01/

August 10, 2017 Posted by | Fukushima 2017 | , , | Leave a comment

Olympic games in Fukushima: Is it safe?

1

 

Fukushima city is going to host Olympic baseball and softball games in 2020.
What is the level of radio-contamination there? This is the question on everybody’s mind, spectators and players from all over the world. Is it really safe?

Baseball and softball games will take place in Azuma Sports Park in Fukushima city.

 

2

 

3

 

Fukushima prefecture provides the information below on the radiation measurements of the Park.

4

Measurements of the airborne radiation dose in the baseball stadium: No 13-16
Those of the softball stadium: No 4
The lines above and below indicate the value of the radiation dose at 1cm and 5cm above the ground.

We notice that, as usual, Fukushima prefecture gives only measurements in terms of radiation dose. Based on this information, one might think that it would be relatively safe to play there or to attend the games. However, monitoring only the radiation dose is not enough for radioprotection. The radiation dose is an indication of external irradiation exposure. In this case, the measures of radioprotection will be to stay away from the radioactive objects or not to stay in their vicinity for a long time. But the radiation dose does not provide information to avoid the risk of internal irradiation. For this latter, it is necessary to monitor surface contamination density or concentration, in this case, of soil (in terms of Becquerels/m2 or Bq/kg), as well as the concentration of radioactive substances in the air (Bq/m3). The radioprotection measures against internal irradiation would be wearing protective gear and masks to avoid the radioactive substances from adhering to the skin and/or entering the body.

 

 

Here is some information provided by Yoichi OZAWA of « Fukuichi Area Environmental Radiation Monitoring Project », the group of which we have published several soil contamination maps in this blog. OZAWA took measurements on July 27 at the request of the ARD German TV channel team which was visiting Fukushima.

PowerPoint プレゼンテーション
Contamination concentration and density of 5cm surface soil around the Azuma Baseball Stadium

Point A : The entrance of the « Torimu no Mori» where children play.
Radiation dose at 1m above the ground : 0.12 μSv/h
Radiation dose on the ground : 0.19µSv/h
Surface concentration : 605 Bq/kg
Surface density : 47,300 Bq/m2

Point B : In front of the Multi-purpose Fields.
Radiation dose at 1m above the ground : 0.10 μSv/h
Radiation dose on the ground : 0.22µSv/h
Surface concentration : 410 Bq/kg
Surface density : 31,200 Bq/m2

To interpret these figures, let us remind you that in Japan, according to the Ordinance on Prevention of Ionizing Radiation Hazards, places where the effective dose is likely to surpass 1.3mSv in 3 months (approximately 0.6µSv/h of airborne radioactivity) or the contamination density to exceed 40,000Bq/m2 are designated as a « Radiation Control Zone » and public entry must be severely restricted. People under 18 years old are not allowed to enter, and even adults, including nuclear workers, cannot stay more than 10 hours. It is prohibited to eat, drink or stay overnight. To leave the zone, one has go through a strict screening to check for radioactive substances leaving the zone, a measure to protect the individual person as well as the environment.

We do not have the measures of surface density of the baseball nor softball stadiums, but in answering the question of the above German TV team, the information was given as to the decontamination work and radiation dose. There had been decontamination work, and the airborne radiation dose was about 0.04µSv/h in the baseball stadium.

Even when decontamination work has been carried out in the stadium, the mountains and woods behind the park have not been decontaminated, and wind and rain bring the radioactive substances towards the park. Besides, as we can see above, other places in the park are highly contaminated when we look at the surface contamination. They represent high risks of internal irradiation. Moreover, according to recent research, radioactive particles disseminated by the Fukushima Daiichi nuclear accident are mostly insoluble in water. This characteristic makes the health hazard much worse than in the case of the usual water soluble Cesium (see English transcription of NHK documentary on Insoluble Radioactive Particles in this blog). We believe that this Park should not be open to the public, especially to children.

The small type of insoluble radioactive particles – also called Cesium balls -, are dispersed in the Tokyo metropolitan area. People who visit this area should be careful and should take adequate radioprotection measures especially when it is windy and the radioactive particles can be re-disseminated.

All in all, we believe that there is far too much risk for the players and spectators to participate in the Olympic games in Fukushima. Fukushima should not host the Olympic games. Furthermore, we are against holding the Olympic games in Tokyo.

___

Read also :

Forest fire in the exclusion zone in Fukushima: Why monitoring the radiation dose is not enough for radioprotection

See the publication of August 4 2017 in the FB of Oz Yo

https://fukushima311voices.wordpress.com/2017/08/07/olympic-games-in-fukushima-is-it-safe/

August 7, 2017 Posted by | Fukushima 2017, Fukushima continuing | , , , | 1 Comment

Blast from the Past: Plutonium Contamination from Fukushima Daiichi Unit 3

94 Plutonium-300x300

 

 

From Majia’s blog

I was reviewing my notes regarding plutonium found at Fukushima and I found this news story worth remembering:

Amina Khan (of the Los Angeles Times). (March 8, 2012). Plutonium near Fukushima plant poses little risk, study says Published: Thursday, March 8, 2012 http://www.heraldnet.com/article/20120308/NEWS02/703089849

The levels of radioactive plutonium around Japan’s Fukushima Daiichi nuclear power plant aren’t much higher than the amount of plutonium remaining in the environment from Cold War-era nuclear weapons tests, and it probably poses little threat to humans, a new study indicates.

The paper, published Thursday in the journal Scientific Reports, provides the first definitive evidence of plutonium from the accident entering the environment, the authors say. It examines the area within a roughly 20-mile radius of the plant and details the concentration of plutonium isotopes deposited there after explosions ripped open multiple reactors.

At the three sites examined, the levels for certain isotope ratios were about double those attributed to residual fallout from above-ground nuclear tests conducted by the U.S. and former Soviet Union at the dawn of the Cold War….

Robert Alvarez, who has served as a senior policy adviser in the U.S. Energy Department, said he would have been surprised if researchers had not found evidence of plutonium contamination near the plant. “They were irradiating plutonium in Unit 3, which experienced the biggest explosion,” he said. In fact, the explosion was so massive that investigators found fuel rod fragments a mile away, leading to speculation that a supercritical fission event may have also occurred, Alvarez said.

The article is referring to a study by Zheng et al. Here is my synopsis of the study’s findings:

A study released in Scientific Reports published by Nature titled ‘Isotopic evidence of plutonium release into the environment from the Fukushima DNPP accident’ by Zheng et al found that a wide array of highly volatile fission products were released, including 129mTe, 131I, 134Cs, 136Cs and 137Cs, which were all found to be ‘widely distributed in Fukushima and its adjacent prefectures in eastern Japan.’[i]

The study also found evidence of actinides, particularly Pu isotopes, on the ground northwest and south of the Fukushima DNPP in the 20–30 km zones. The study called for long-term investigation of Pu and 241Am dose estimates because of findings of ‘high activity ratio of 241Pu/239+240Pu (> 100) from the Fukushima DNPP accident.’

The study concluded that in comparison to Chernobyl, the Fukushima accident ‘had a slightly higher 241Pu/239Pu atom ratio, but lower ratio of 240Pu/239Pu.’ Unit 3 was seen as the likely source for the high Pu detections.

[i] J. Zheng, K. Tagami, Y. Watanabe, S. Uchida, T. Aono, N. Ishii, S. Yoshida, Y. Kubota, S. Fuma and S. Ihara (8 March 2012 ) ‘Isotopic Evidence of Plutonium Release into the Environment from the Fukushima DNPP Accident,’ Scientific Reports, 2, http://www.nature.com/srep/2012/120308/srep00304/full/srep00304.html.

http://majiasblog.blogspot.fr/2017/07/blast-from-past-plutonium-contamination.html

August 3, 2017 Posted by | Fukushima 2017 | , , | Leave a comment