nuclear-news

The News That Matters about the Nuclear Industry Fukushima Chernobyl Mayak Three Mile Island Atomic Testing Radiation Isotope

16.33uSv/h on Route 114, Fukushima

31 july 2018 route 114.jpeg
16.33uSv/h on Route 114, Fukushima, which is over 70 times as high as the decontamination level. The very highway where the gov. lifted a ban on vehicular traffic.
 
Advertisements

August 1, 2018 Posted by | Fukushima 2018 | , , | Leave a comment

Fukushima Route 114 to Namie is No Route 66!

35864520_830136463852837_5482498720819838976_n.jpg
Even after lifting the ban on R114 last September, the route leading to Namie, a town near the Fukushima Daiichi nuclear plant, radiation remains very high.

June 22, 2018 Posted by | Fukushima 2018 | , , , | Leave a comment

Returnee Fukushima farmers offer taste of rice cultivation in hopes of revitalization

Sustaining the hope of recovery despite the radioactive contamination risk
 
10 june 2018 namie.jpg
University students covered in mud plant rice saplings in a drained paddy in the town of Namie, Fukushima Prefecture, on May 19, 2018.
 
June 10, 2018
FUKUSHIMA — University students and others from around Japan are coming to the farming villages of Fukushima Prefecture where evacuation orders from the 2011 nuclear disaster have been lifted, experiencing rice planting and interacting with local residents who are facing a difficult recovery and population decline.
Organized by local municipal governments and residents, the visits by people from outside the region affected by the Fukushima No. 1 Nuclear Power Plant disaster are providing inspiration to farmers, who have seen less than 20 percent of the pre-disaster farmland planted, and few inheritors to carry on the region’s farming industry.
The laughter echoed over the idle farmland of the Sakata district in the town of Namie, Fukushima Prefecture, as university students and other participants planted rice by hand in a drained paddy on May 19.
“Everyone looks like they’re having fun,” said Namie resident and farmer Kiyoto Matsumoto, 79, with a smile. “Watching them is pretty enjoyable.”
Students started coming to Namie to experience rice planting two years ago. The idea of the event was to have them learn about the current conditions in areas affected by the March 2011 earthquake, tsunami and nuclear disasters, and to link the awareness with the revitalization of the region. On that day, roughly 60 students worked up a sweat in the mud of the rice paddies. The students can also take part in the harvest of the crops and sell the rice at a local festival held in the town in November.
“I really got a feel for how hard farmers work, and I also learned about the lack of successors to take over the farms and other issues,” said an 18-year-old first-timer, a student at Waseda University in Tokyo. Matsumoto hopes that “the young people (who participate) will be able to feel something through experiencing agricultural work.”
In areas where the 2011 evacuation order has been lifted, rice production has once again become possible. The Fukushima Prefectural Government has been testing all rice produced within the prefecture, and there have been no cases where the rice exceeded the standard limit of the radioactive material cesium from 2015-2017. Still, even after the evacuation order was lifted, residents have not been returning to their pre-disaster homes, and with the added influence of an aging population and a lack of successors, there are few farmers who have taken up rice cultivation again. Of the farmland across the five villages and towns of Tomioka, Namie, Iitate, Katsurao and Naraha, the Odaka Ward of the city of Minamisoma and the Yamakiya district of the town of Kawamata, for which evacuation orders were lifted between 2015 and 2017, only between less than 1 percent to 14 percent of the pre-disaster farmland was in use this spring.
In the village of Iitate, 73-year-old farmer Masao Aita also held a rice-planting event on May 19 for adults and students alike that attracted 32 participants. Aita and his wife just returned to the village the month before. The couple had given up on cultivating rice out of concern that they would not be able to sell what they had produced, and planned to plant the fields with tulips and other flowers. However, they were approached by a volunteer group. The group recommended the rice cultivation event.
Aita plans to send the harvested rice to each of the participants and have them give it a taste. “If people from the outside come visit the village, then it is bound to spark something eventually,” he said.
(Japanese original by Shuji Ozaki, Fukushima Bureau)

June 13, 2018 Posted by | Fukushima 2018 | , , , | Leave a comment

Fukushima tells world radiation is down, exports up after nuclear crisis

Japanese “sake” from Fukushima, anyone?
The governor of Fukushima was in NYC promoting their food products.
Promoting Fukushima foods is national policy of Japan. No other prefecture in Japan gets this kind of support. Here is a page from the official government’s site:

Fukushima Foods: Safe and Delicious: Six years have passed since the 2011 Great East Japan Earthquake, and the prefecture of Fukushima is making steady progress in its reconstruction and revitalization. Fukushima has long been famous for its agriculture, known since old times as one of Japan’s premier rice-growing regions, and also earning the nickname “The Fruit Kingdom.” Fukushima’s agriculture suffered drastically after the earthquake and the nuclear power accident that followed, but as a result of thorough safety measures implemented through national efforts, foods produced in Fukushima have been recognized as safe by the FAO (Food and Agriculture Organization of the United Nations), as well as by many individual countries, and the prefecture’s exports are increasing. Japan hopes that more and more people will enjoy the safe and delicious foods from Fukushima in the years to come.

 

n-fukushima-a-20180601-870x674.jpg
Fukushima Gov. Masao Uchibori speaks about the current conditions of Fukushima Prefecture on Wednesday at One World Trade Center in New York.
May 31, 2018
NEW YORK – Fukushima Gov. Masao Uchibori on Wednesday told the international community that the nuclear-crisis-hit prefecture is mostly decontaminated and that its food exports are picking up.
“Our consistent efforts over the seven years have borne fruit and recovery is underway,” Uchibori said at a news conference at One World Trade Center in New York, a site symbolizing the U.S. recovery from the Sept. 11, 2001, terror attacks.
He said the prefecture has completed decontamination work for 97 percent of its land after a magnitude-9.0 earthquake and tsunami on March 11, 2011, triggered reactor meltdowns at the Fukushima No. 1 nuclear power plant. The governor also said the size of evacuation zones has dropped to 3 percent of prefectural land from the peak of 12 percent.
“The radiation levels of the cities within the prefecture are now the same as any other major city in the world,” he said.
Although a stigma is still attached to Fukushima food products, exports in the year through this March stood at about 210 tons, eclipsing the pre-crisis level of roughly 150 tons in fiscal 2010, according to Uchibori.
Rice and peaches are being exported to countries including Malaysia and Vietnam and a store dealing in its local sake is opening in New York.
As of May 17, about 12,000 Fukushima residents were still under evacuation, according to the Reconstruction Agency. The decommissioning of the crippled nuclear power plant of Tokyo Electric Power Company Holdings Inc. is expected to take 30 to 40 years.

June 5, 2018 Posted by | Fukushima 2018 | , , , , | Leave a comment

Fukushima-Daiichi radioactive particle release was significant says new research

1920_fukushima-crop.jpg
24 May 2018
Scientists say there was a significant release of radioactive particles during the Fukushima-Daiichi nuclear accident.
The researchers identified the contamination using a new method and say if the particles are inhaled they could pose long-term health risks to humans.
The new method allows scientists to quickly count the number of caesium-rich micro-particles in Fukushima soils and quantify the amount of radioactivity associated with these particles.
The research, which was carried out by scientists from Kyushu University, Japan, and The University of Manchester, UK, was published in Environmental Science and Technology.
In the immediate aftermath of the Fukushima Daiichi nuclear accident, it was thought that only volatile, gaseous radionuclides, such as caesium and iodine, were released from the damaged reactors. However, in recent years it has become apparent that small radioactive particles, termed caesium-rich micro-particles, were also released. Scientists have shown that these particles are mainly made of glass, and that they contain significant amounts of radioactive caesium, as well as smaller amounts of other radioisotopes, such as uranium and technetium.
The abundance of these micro-particles in Japanese soils and sediments, and their environmental impact is poorly understood. But the particles are very small and do not dissolve easily, meaning they could pose long-term health risks to humans if inhaled.
Therefore, scientists need to understand how many of the micro-particles are present in Fukushima soils and how much of the soil radioactivity can be attributed to the particles. Until recently, these measurements have proven challenging.
The new method makes use of a technique that is readily available in most Radiochemistry Laboratories called Autoradiography. In the method, an imaging plate is placed over contaminated soil samples covered with a plastic wrap, and the radioactive decay from the soil is recorded as an image on the plate. The image from plate is then read onto a computer.
“We now need to push forward and better understand if caesium micro-particles are abundant throughout not only the exclusion zone, but also elsewhere in the Fukushima prefecture; then we can start to gauge their impact”. 
Dr Gareth Law
The scientists say radioactive decay from the caesium-rich micro particles can be differentiated from other forms of caesium contamination in the soil.
The scientists tested the new method on rice paddy soil samples retrieved from different locations within the Fukushima prefecture. The samples were taken close to (4 km) and far away (40 km) from the damaged nuclear reactors. The new method found caesium-rich micro-particles in all of the samples and showed that the amount of caesium associated with the micro-particles in the soil was much larger than expected.
Dr Satoshi Utsunomiya, Associate Professor at Kyushu University, Japan, and the lead author of the study says “when we first started to find caesium-rich micro-particles in Fukushima soil samples, we thought they would turn out to be relatively rare. Now, using this method, we find there are lots of caesium-rich microparticles in exclusion zone soils and also in the soils collected from outside of the exclusion zone”.
Dr Gareth Law, Senior Lecturer in Analytical Radiochemistry at the University of Manchester and an author on the paper, adds: “Our research indicates that significant amounts of caesium were released from the Fukushima Daiichi reactors in particle form.
“This particle form of caesium behaves differently to the other, more soluble forms of caesium in the environment. We now need to push forward and better understand if caesium micro-particles are abundant throughout not only the exclusion zone, but also elsewhere in the Fukushima prefecture; then we can start to gauge their impact”.
The new method can be easily used by other research teams investigating the environmental impact of the Fukushima Daiichi accident.
Dr Utsunomiya adds: “we hope that our method will allow scientists to quickly measure the abundance of caesium-rich micro-particles at other locations and estimate the amount of caesium radioactivity associated with the particles. This information can then inform cost effective, safe management and clean-up of soils contaminated by the nuclear accident”.
 
The paper, ‘Novel Method of Quantifying Radioactive Cesium-Rich Microparticles (CsMPs) in the Environment from the Fukushima Daiichi Nuclear Power Plant’ has been published in the journal of Environmental Science – DOI:10.1021/acs.est.7b06693
Energy is one of The University of Manchester’s research beacons – examples of pioneering discoveries, interdisciplinary collaboration and cross-sector partnerships that are tackling some of the biggest questions facing the planet. #ResearchBeacons

May 27, 2018 Posted by | Fukushima 2018 | , , , | Leave a comment

Radiation monitors in Fukushima to be scrapped after malfunctioning to the tune of ¥500 million a year

n-fukushima-a-20180521
May 21, 2018
The thousands of radiation-monitoring posts installed in Fukushima Prefecture after the 2011 nuclear crisis have malfunctioned nearly 4,000 times, sources said Sunday as the Nuclear Regulation Authority prepares to remove them after spending ¥500 million a year on repair costs.
“It’s all about the budget in the end. They can’t reuse the devices and there seem to be no concrete plans,” said Terumi Kataoka, a housewife in Aizuwakamatsu who formed a group of mothers to petition the NRA last month to keep the monitors in place. The NRA refused.
Around 3,000 of the monitors were installed in the wake of the triple core meltdown at the Fukushima No. 1 power plant following the March 2011 mega-quake and tsunami. The NRA, which operates the monitoring posts, plans to remove around 80 percent of them by the end of fiscal 2020 on the grounds that radiation levels in some areas have fallen and stabilized.
But the move is being viewed by some as an attempt to cut costs because the government is also looking to terminate its special budgetary account for rebuilding Tohoku by the same year.
Some municipalities and residents oppose scrapping the monitoring posts because they will no longer be able to gauge the risk to their health. They were installed in kindergartens, schools and other places to measure radiation in the air, according to the NRA.
But in the five years since the network was activated in fiscal 2013, the system has been plagued by problems including inaccurate readings and data-transmission failures. The tally of cases stands at 3,955.
Each time, the undisclosed makers of the device and security companies were called to fix it, costing the central government about ¥500 million a year.
In March, the NRA decided to remove about 2,400 of the monitoring posts from areas outside the 12 municipalities near the wrecked power plant and reuse some of them in the municipalities.
Local citizens’ groups have asked the NRA not to remove the monitoring posts until the plant, run by Tokyo Electric Power Company Holdings Inc., is decommissioned. That project is expected to take decades.
Kataoka asked the NRA to disclose information on its plans to reuse the devices, but she was told no official documents on the plans had been drafted yet.
On Monday, Fukushima Gov. Masao Uchibori urged the central government to investigate the cause of the monitor malfunctions and take measures to address the issue.
“The accuracy of the system is important,” he said.
Safecast, a global volunteer-based citizen science organization formed in 2011 to monitor radiation from the Fukushima disaster, said some devices had to be replaced because they didn’t work or were not made to the required specifications. Many were placed in locations that had notably lower ambient radiation than their surroundings, and so were not adequately representative of the situation, it added.
“Removing the units seems like a huge step away from transparency,” said Azby Brown, lead researcher at Safecast.
Brown said the public will certainly view the move with suspicion and increasingly mistrust the government, while the continuity of the database is lost.

May 23, 2018 Posted by | Fukushima 2018 | , , | Leave a comment

‘Global Consequences’ of Lethal Radiation Leak at Destroyed Japan Nuclear Plant

mai 4 2018.jpg
May 4, 2018
Lethal levels of radiation have been observed inside Japan’s damaged Fukushima nuclear power plant. And they are arguably way higher than you suspect.
According to Tokyo Electric Power Company (Tepco), radiation levels of eight Sieverts per hour (Sv/h) have been discovered within the Fukushima nuclear power plant, which was destroyed after a massive earthquake and a tsunami in March 2011.
Tepco, the company that operated the plant and is now tasked with decommissioning it, reported the discovery after making observations in a reactor containment vessel last month.
Eight Sv/h of radiation, if absorbed at once, mean certain death, even with quick treatment. One Sv/h is likely to cause sickness and 5.5 Sv/h will result in a high chance of developing cancer.
While 8 Sv/h is deadly, outside of Fukushima’s Reactor Number 2 foundations of a much higher level of 42 Sv/h was detected.
A strange occurrence, and experts are still arguing what caused the discrepancy. One possible explanation is that cooling water washed radioactive material off debris, taking it somewhere else.
But here’s a truly terrifying catch: according to the report, Tepco highly doubts the new readings, because, as was discovered later, a cover was not removed from the robot-mounted measurement device at the time of the inspection, NHK World reports.
Exactly one year ago, Sputnik reported that Tepco engineers discovered absolutely insane levels of radiation of about 530 Sv/h within the reactor. Such levels of radiation would kill a human within seconds. By comparison, the Chernobyl reactor reads 34 Sv/h radiation level, enough to kill a human after 20 minutes of exposure.
The levels of radiation within Fukushima reactor number 2 were so high that Tepco’s toughest robot, designed to withstand 1000 Sv/h of radiation, had to be pulled out, as it started glitching due to high radiation levels. Nuclear experts called the radiation levels “unimaginable” at the time.
On November 2017, the New York Times and other news outlets reported a much smaller figure of 70 Sv/h of radiation, more or less on par with a 74 Sv/h reading gathered before an anomalous 530 Sv/h spike.
While that radiation dosimeter cover negligence prevents precise calculations, the actual picture inside Unit 2 is thought to be much worse.
Japanese state broadcaster NHK World quoted experts saying that if the cleaning of the stricken power plant is not properly addressed, it will result in major leak of radioactivity with “global” consequences.
Richard Black, director of the Energy and Climate Intelligence Unit, says that while the readings are not reliable, they still “demonstrate that, seven years after the disaster, cleaning up the Fukushima site remains a massive challenge — and one that we’re going to be reading about for decades, never mind years.”
Mycle Schneider, independent energy consultant and lead author of the World Nuclear Industry Status Report, criticized Tepco, saying the power company has “no clue” what it is doing.
“I find it symptomatic of the past seven years, in that they don’t know what they’re doing, Tepco, these energy companies, haven’t a clue what they’re doing, so to me it’s been going wrong from the beginning. It’s a disaster of unseen proportions.”
In observing the poor maintenance of plant radiation leaks, Schneider also pointed out that the company stores nuclear waste at the site in an inappropriate way.
“This is an area of the planet that gets hit by tornadoes and all kinds of heavy weather patterns, which is a problem. When you have waste stored above ground in inappropriate ways, it can get washed out and you can get contamination all over the place.”

May 5, 2018 Posted by | Fukushima 2018 | , , | Leave a comment

Stark health findings for Fukushima monkeys

e1.png
March 11, 2018
By Cindy Folkers
 
Seven years after the Fukushima, Japan nuclear disaster began, forcing evacuations of at least 160,000 people, research has uncovered significant health impacts affecting monkeys living in the area and exposed to the radiological contamination of their habitat.
 
Shin-ichi Hayama, a wild animal veterinarian, has been studying the Japanese macaque (Macaca fuscata), or snow monkey, since before the Fukushima nuclear disaster. Now, his research has shown that monkeys in Fukushima have significantly low white and red blood cell counts as well as a reduced growth rate for body weight and smaller head sizes.
 
Hayama, who began his macaque research in 2008, had access to monkeys culled by Fukushima City as a crop protection measure. He continued his work after the Fukushima nuclear explosions. As a result, he is uniquely positioned to discover how low, chronic radiation exposure can affect generations of monkeys.
e2
Japanese Macaque monkeys share close DNA with humans
The macaque is an old world monkey native to Japan, living in the coldest climates of all of the non-human primates. Like humans, macaques enjoy a good soak in the mountain hot springs in the region. It is even said that they have developed a “hot tub culture” and enjoy time at the pools to get warm during winter.
 
However, snow monkeys and humans share more than a love of hot springs. Human DNA differs from rhesus monkeys, a relative of the snow monkey, by just 7%. While that 7% can mean the difference between building vast cities to living unsheltered and outdoors, for basic processes like reproduction, these differences begin to fade. Consequently, what is happening to the macaques in Fukushima should send a warning about the implications for human health as well, and especially for evacuees now returning to a region that has been far from “cleaned up” to any satisfactory level.
 
Hayama’s research group has published two studies, each comparing data before and after the nuclear catastrophe began, and also between exposed and unexposed monkey populations. In a 2014 study, researchers compared monkeys from two regions of Japan, one group of monkeys from the Shimokita region, 400 Km north of Fukushima, and a second group of monkeys from contaminated land in Fukushima.
 
The monkeys in Fukushima had significantly low white and red blood cell counts. Other blood components were also reduced. The more a radioactive isotope called cesium was present in their muscles, the lower the white blood cell count, suggesting that the exposure to radioactive material contributed to the damaging blood changes. These blood levels have not recovered, even through 2017, meaning that this has become a chronic health issue.
 
Changes in blood are also found in people inhabiting contaminated areas around Chernobyl. Having a diminished number of white blood cells, which fight disease, can lead to a compromised immune system in monkeys as well as people, making both species unable to fight off all manner of disease.
e3
Some macaque babies in the Fukushima zone have smaller brains post nuclear disaster
Hayama followed up his 2014 study with another in 2017 examining the differences in monkey fetus growth before and after the disaster. The researchers measured fetuses collected between 2008 and 2016 from Fukushima City, approximately 70 km from the ruined reactors. Comparing the relative growth of 31 fetuses conceived prior to the disaster and 31 fetuses conceived after the disaster revealed that body weight growth rate and head size were significantly lower in fetuses conceived after the disaster. Yet, there was no significant difference in maternal nutrition, meaning that radiation could be responsible.
 
Smaller head size indicates that the fetal brain was developmentally retarded although researchers could not identify which part was affected. The mothers’ muscles still contained radioactive cesium as in the 2014 study, although the levels had decreased. These mothers had conceived after the initial disaster began, meaning that their fetuses’ health reflects a continuing exposure from environmental contamination. This study mirrors human studies around Chernobyl that show similar impacts as well as research from atomic bomb survivors. Studies of birds in Chernobyl contaminated areas show that they have smaller brains.
 
Although Hayama has approached radiation experts to aid with his research, he claims they have rejected it, saying they don’t have resources or time, preferring to focus on humans. But humans can remove themselves from contaminated areas, and many have chosen to stay away despite government policies encouraging return. Tragically, monkeys don’t know to leave, and relocating them is not under discussion, making study of radiation’s impact on their health vital to inform radiation research on humans, the environment, and any resettlement plans the government of Japan may have.
 
Hayama presented his work most recently as part of the University of Chicago’s commemoration of the 75th Anniversary of the first man-made controlled nuclear chain reaction. His work follows a long, important, and growing line of research demonstrating that radiation can not only damage in the obvious ways we have been told, but in subtle, yet destructive ways that were unexpected before. The implications for humans, other animals, and the environment, are stark.
 
Cindy Folkers is the radiation and health specialist at Beyond Nuclear.
 

March 15, 2018 Posted by | Fukushima 2018 | , , , | Leave a comment

This woman is winning the fight for justice after Fukushima

11 March 2018
by Kazue Suzuki and Shaun Burnie
 
d1.jpg
Evacuee and Fukushima survivor, Mrs. Kanno, returns to her abandoned house nearly seven years after the nuclear accident.
 
On the seventh anniversary of the 2011 earthquake, tsunami and Fukushima nuclear accident, our thoughts and deepest sympathies continue to be with the people of Japan.
 
Every one of the tens of thousands evacuees from the 2011 Fukushima Daiichi triple reactor meltdown has a story to tell.
 
In our latest radiation survey we had the privilege to hear the experience of Mrs Mizue Kanno. As we entered the exclusion zone of Namie, Ms Kanno told us of the events seven years ago that were to change her life, her family and those of thousands of others.
 
Mrs Kanno was a social worker in Futaba less than 10 km from the nuclear plant. Eventually she made her way home after the devastating earthquake, and over the next few days thousands of people were evacuated to her home district of Tsushima. Families moved into her home. But soon they were warned by men in gas masks and protective clothing to get out immediately. The radioactive fallout from the nuclear plant, about 32 km away, had deposited high levels of contamination in this mountainous area of Namie.
 
Radiation Survey of Mrs. Kanno's House in Shimo-Tsushima
Evacuee and Fukushima survivor, Mrs. Kanno, watches Greenpeace radiation specialists Mai Suzuki and Laurence Bergot measure for contamination around her home located in the exclusion zone of Namie, Fukushima prefecture.
 
Mrs Kanno now lives in western Japan, many hundreds of kilometres from her home in Fukushima. While she is a victim of nuclear power, she isn’t passive observer – instead she’s a female activist determined to tell her story. She campaigns across the Kansai region against nuclear power and for renewable energy.
 
Like thousands of other evacuees, she has joined lawsuits filed against the Tokyo Electric Power Company (TEPCO), and the Japanese government. Already found guilty in multiple court proceedings of being criminally negligent in failing to take measures to prevent the meltdown, TEPCO and the government can expect many more rulings against them.
 
Because of the support of Mrs Kanno and her friends and neighbours, Greenpeace has been able to conduct a wide ranging survey inside the exclusion zone of Namie, published in our report, Reflecting in Fukushima.
 
While our survey report is filled with microsieverts and millisieverts, it’s far more about the lives and the land of Mrs Kanno her family, friends and neighbours. http://www.greenpeace.org/japan/Global/japan/pdf/RefFksm_EN.pdf
 
d3.jpg
Closed entrance to Shimo-Tsushima school in the exclusion zone of Namie, Fukushima prefecture, Japan.
 
Measuring thousands of points around homes, forests and farmland, it’s clear that this is an area that should not be opened to the public for many decades. Yet the government opened a main artery, route 114, while we were working in Namie.
 
One consequence is that people are stopping off and visiting areas high in radiation. At one house, radiation hot spots were over 11 microsieverts per hour (μSv/h) at one meter, and 137μSv/hat 10 centimetres. These levels are thousands of times the background level before the nuclear accident, and mean you’d reach your recommended maximum annual exposure in six days.
 
Yet, two people were working 10 meters away from the hot spot with no dosimeters or protective clothing. Mrs Kanno and our radiation specialists explained the levels of contamination and why it was necessary to take precautions.
 
In one zone in Obori, we measured radiation that would expose a decontamination worker to the 1 mSv/y limit in just 10 working days. The whole area is contaminated to varying high levels that will remain a threat into next century. How could the government be thinking of opening this area as early as 2023? More importantly, why?
 
It’s actually simple and wholly cynical. The Japanese government is desperate to restart nuclear reactors. Today only three are operating. Having areas of Japan closed to human habitation because of radioactive contamination is a very major obstacle to the government’s ambitions to operate 30-35 nuclear reactors. It’s a constant reminder to the people of Japan of the risks and consequences of nuclear power.
 
Yet, there are signs of positive change. Last month a panel of experts established by the Foreign Minister called for a mass scaling up of renewables, and warned of the risks from depending on coal plants and nuclear power. The voices of Mrs Kanno, the other thousands of Fukushima evacuees and the majority of people in Japan, and their demand for a different energy future, will be heard.
 
Radiation Survey in Obori
Greenpeace radiation specialist Laurence Bergot in Obori, Namie Town inside the highly contaminated exclusion zone in Namie, Fukushima prefecture, Japan
 
Throughout our time in Namie, as we visited the highly contaminated area of Obori and Tsushima – quiet, remote areas of natural beauty – Mrs Kanno told us about the life and traditions of families who for generations had supported themselves by farming. Now all of them are displaced and scattered across Japan. Yet the government is failing to even acknowledge their rights under domestic and international human rights law.
 
This week, we will be traveling to Geneva with mothers who are evacuees from Fukushima to the United Nations Human Rights Council session on Japan. The Japanese government has been under pressure to stop its violations of the human rights of Fukushima evacuees. Last week it accepted all recommendations at the UN to respect the human rights of Fukushima citizens. This included the German government recommendation to restore to a maximum annual public exposure of 1 mSv. This global safety standard has been abandoned by the Abe government.
 
The government’s decision is important, but now they need to be implemented if they are genuine in their commitments to the United Nations. On the 16 March this year, Mrs Kanno and other evacuees and their lawyers will attend the Tokyo high court for a ruling on Fukushima against TEPCO and the Government. One of the evacuee mothers, Akiko Morimatsu, together with Greenpeace, on the same day will speak at the United Nations to challenge the Japanese government to now fully apply the UN recommendations.
 
While we will be thousands of kilometers apart, we will be with Mrs Kanno on her day in court in Tokyo and she will be with us in Geneva. The Fukushima nuclear disaster has shattered lives but it has also brought us together determined to prevent such a terrible event from ever happening again and to transition Japan to a secure and safe energy future based on renewables.
 
Kazue Suzuki is an Energy Campaigner at Greenpeace Japan and Shaun Burnie is a Senior Nuclear Specialist at Greenpeace Germany
 

March 15, 2018 Posted by | Fukushima 2018 | , , , , | Leave a comment

‘Citizen scientists’ track radiation seven years after Fukushima

11th March 2018
Safecast now has around 3,000 devices worldwide and data from 90 countries
b1
Japanese priest Sadamaru Okano is one of the ‘citizen scientists’ collecting radiation readings in the Fukushima region.
 
JAPAN – Beneath the elegant curves of the roof on the Seirinji Buddhist temple in Japan’s Fukushima region hangs an unlikely adornment: a Geiger counter collecting real-time radiation readings.
 
The machine is sending data to Safecast, an NGO born after the March 2011 Fukushima nuclear disaster that says it has now built the world’s largest radiation dataset, thanks to the efforts of citizen scientists like Seirinji’s priest Sadamaru Okano.
 
Like many Japanese, Okano lost faith in the government after the nuclear meltdown seven years ago.
 
“The government did not tell us the truth, they did not tell us the true measures,” he told AFP, seated inside the 150-year-old temple.
 
Okano was in a better position than most to doubt the government line, having developed an amateur interest in nuclear technology two decades earlier after learning about the Chernobyl disaster.
 
To the bemusement of friends and family, he started measuring local radiation levels in 2007, so when the disaster happened, he had baseline data.
 
“The readings were so high… 50 times higher than natural radiation,” he said of the post-disaster data.
 
“I was amazed… the news was telling us there was nothing, the administration was telling us there was nothing to worry about.”
 
That dearth of trustworthy information was the genesis of Safecast, said co-founder Pieter Franken, who was in Tokyo with his family when the disaster hit.
 
Franken and several friends had the idea of gathering data by attaching Geiger counters to cars and driving around.
 
“Like how Google does Street View, we could do something for radiation in the same way,” he said.
 
“The only problem was that the system to do that did not exist and the only way to solve that problem was to go and build it ourselves. So that is what we did.”
 
b2
A geiger counter operated by the Safecast group is attached to a fence near the stricken Dai-ichi power plant
 
 
Making informed choices
 
Within a week, the group had a prototype and began getting readings that suggested the 20 kilometre (12 mile) exclusion zone declared around the Fukushima plant had no basis in the data, Franken said.
 
“Evacuees were sent from areas with lower radiation to areas with higher radiation” in some cases, he said.
 
The zone was eventually redrawn, but for many local residents, it was too late to restore trust in the government.
 
Okano evacuated his mother, wife and son while he stayed with his flock.
 
But a year later, based on his own readings and after decontamination efforts, he brought them back.
 
He learned about Safecast’s efforts and in 2013 installed one of their static counters on his temple, in part to help reassure worshippers.
 
“I told them: we are measuring the radiation on a daily basis… so if you access the (Safecast) website you can choose (if you think) it’s safe or not.”
 
Forty kilometres away, in the town of Koriyama, Norio Watanabe was supervising patiently as his giggling teenage pupils attempted to build basic versions of Safecast’s Geiger counter.
 
Dressed in blazers and tartan skirts, the girls pored over instructions on where to place diodes and wires.
 
Watanabe has been a Safecast volunteer since 2011, and has a mobile Geiger counter in his car.
 
In the days after the disaster evacuees flocked to Koriyama, which was outside the evacuation zone, and he assumed his town was safe.
 
“But after I started to do the measurements, I realised there was a high level of risk here as well,” he said.
 
b3
Japanese teacher Norio Watanabe works with Safecast to teach his pupils how to measure radiation
 
 
‘You can’t ignore it’
 
He sent his children away, but stayed behind to look after his mother, a decision he believes may have contributed to his 2015 diagnosis with thyroid cancer.
 
“As a scientist, I think the chance that it was caused by the Fukushima accident might be 50-50, but in my heart, I think it was likely the cause,” he said.
 
His thyroid was removed and he is now healthy, but Watanabe worries about his students, who he fears “will carry risk with them for the rest of their lives.”
 
“If there are no people like me who continue to monitor the levels, it will be forgotten.”
 
Safecast now has around 3,000 devices worldwide and data from 90 countries. Its counters come as a kit that volunteers can buy through third parties and assemble at home.
 
Because volunteers choose where they want to measure at random and often overlap, “they validate unknowingly each other’s measurements,” said Franken, and anomalies or exceptions are checked by Safecast staff.
 
The NGO is now expanding into measuring air pollution, initially mostly in the US city of Los Angeles during a test phase.
 
Its radiation data is all open source, and has been used to study everything from the effects of fallout on wildlife to how people move around cities, said Franken.
 
He says Safecast’s data mostly corroborates official measurements, but provides readings that are more relevant to people’s lives.
 
“Our volunteers decide to measure where their schools are, where their workplaces are, where their houses are.”
 
And he believes Safecast has helped push Japan’s government to realise that “transparency and being open are very important to create trust.”
 
“The power of citizen science means that you can’t stop it and also that you can’t ignore it.”
 

March 15, 2018 Posted by | Fukushima 2018 | , , | Leave a comment

Radiation levels in Fukushima zones higher in 2017 than 2016, and still above government target despite cleanup: Greenpeace Japan

Look how the Japanese media are routinely censoring the news about the Fukushima situation.
In the first article  about the Greenpeace recent report, a short article published in Australia, are clearly stated:
1. Fukushima still has radiation 100 times higher than normal.
2. Greenpeace warned all areas surveyed, including those where people have been allowed to return, had levels of radiation similar to an active nuclear facility “requiring strict controls”, despite the fact that residents had lifted restrictions on access after years of decontamination efforts.
3. “This is public land. Citizens, including children and pregnant women returning to their contaminated homes, are at risk of receiving radiation doses equivalent to one chest X-ray every week.
4. This is unacceptable and a clear violation of their human rights,” Jan Vande Putte with Greenpeace Belgium, and leader of the survey, said.
In the second article about the Greenpeace recent report, a longer article published by the Japan Times in Japan, all those clearly stated 4 points have now disappeared, vanished, having been censored and left out, or spinned down, reduced, minimized such as:
1. “radiation 100 times higher than normal” becomes ” radiation levels higher than the government-set target of 0.23 microsieverts per hour, ranging from 0.2 to 0.8 microsieverts per hour” , meaning 4 times higher than the Japanese government-set target.
This is a typical example that shows you how the Japanese media, unfree from the Japanese government heavy censorship, have been for the past 7 years lying, hiding the true facts of the ongoing yet unsettled nuclear disaster in Fukushima, to the majority of the Japanese population.
n-radiation-a-20180302-870x580.jpg
A member of Greenpeace checks radiation levels in the village of Iitate in Fukushima Prefecture last October. | GREENPEACE / VIA KYODO
March 1, 2018
Fukushima radiation still high: Greenpeace
A new report by Greenpeace says Fukushima, the sight of 2011’s nuclear accident after an earthquake, still has radiation 100 times higher than normal.
Greenpeace says towns in Japan’s Fukushima prefecture, close to the disaster-hit Fukushima Daiichi nuclear power plant, are exposed to excessive levels of radiation.
In a report published on Thursday, Greenpeace warned all areas surveyed, including those where people have been allowed to return, had levels of radiation similar to an active nuclear facility “requiring strict controls”, despite the fact that residents had lifted restrictions on access after years of decontamination efforts.
“This is public land. Citizens, including children and pregnant women returning to their contaminated homes, are at risk of receiving radiation doses equivalent to one chest X-ray every week. This is unacceptable and a clear violation of their human rights,” Jan Vande Putte with Greenpeace Belgium, and leader of the survey, said.
Japanese authorities have said these areas are progressively returning to normality after the massive 9.1-magnitude earthquake and resulting tsunami which struck on March 11, 2011, triggering the nuclear disaster at Fukushima.
The survey said that in the towns of Namie and Iitate, located between 10 and 40 kilometres from the Fukushima Daiichi plant and where evacuation orders were partially lifted in March 2017, radiation levels continue to be “up to 100 times higher than the international limit for public exposure”.
Greenpeace also noted the “ineffectiveness of decontamination work” in these areas, saying there remained a “significant risk to health and safety for any returning evacuee”, adding that Tokyo’s policy of “effectively forcing people to return by ending housing and other financial support is not working”.
The Japanese government had said radiation levels in the reopened zones posed no risk to human health, noting that its data was corroborated by the country’s medical experts and organisations such as the United Nations Scientific Committee on the Effects of Atomic Radiation.
Considered the worst nuclear disaster since the 1986 Chernobyl disaster in Ukraine, the accident at Fukushima displaced tens of thousands of people, caused serious damage to the local economy.
Radiation levels in Fukushima zones higher in 2017 than 2016, and still above government target despite cleanup: Greenpeace Japan
Following the 2011 nuclear crisis, radiation levels at houses and areas nearby in a Fukushima village remain around three times higher than the government target despite cleanup work having been performed, an environmental group has said.
In some areas of the village of Iitate and the town of Namie, levels of radioactivity detected at some points among tens of thousands checked in surveys last September and October were higher than they had been the previous year, Greenpeace Japan said in a report released Thursday.
Most of the six houses surveyed in Iitate, located around 40 kilometers northwest of the crippled Fukushima No. 1 complex, logged radiation levels higher than the government-set target of 0.23 microsieverts per hour, ranging from 0.2 to 0.8 microsieverts per hour.
Some areas in the village had seen radiation levels rise from 2016, Greenpeace said. “There is a possibility (the environment) was contaminated again as radioactive materials that had accumulated in nearby forests may have moved around,” it said.
One house, located near a municipal office with slightly wooded areas nearby, marked lower radiation levels compared with the previous 2016 survey but levels at another five houses — which are near forests that have yet to be cleaned up — have remained almost the same.
The points surveyed covered areas in Iitate and Namie where evacuation orders have been lifted as well as some parts of Namie that remain designated as “difficult to return” zones following the Fukushima nuclear disaster, which was triggered by the massive March 2011 earthquake and tsunami.
The survey also showed that the effects of cleanup work conducted in 2011 and 2012 in the Tsushima district of Namie, located 40 km northwest of the Fukushima plant, had been limited, with one house there logging radiation levels of 5.8 microsieverts per hour at the highest readings and 1.3 microsieverts per hour on average.
The district is among areas designated as special reconstruction zones by the government. The state plans to carry out cleanup work and promote infrastructure development intensively at its expense to make such areas livable again.

March 1, 2018 Posted by | Fukushima 2018 | , , , , , , | 1 Comment

Comparison study of calculated beta- and gamma-ray doses after the Fukushima accident in Minamisoma: skin dose estimated to be 164 mSv over 3 years

Comparison of calculated beta- and gamma-ray doses after the Fukushima accident with data from single-grain luminescence retrospective dosimetry of quartz inclusions in a brick sample
Journal of Radiation Research, https://doi.org/10.1093/jrr/rrx099
Published: 27 January 2018

ABSTRACT

To estimate the beta- and gamma-ray doses in a brick sample taken from Odaka, Minami-Soma City, Fukushima Prefecture, Japan, a Monte Carlo calculation was performed with Particle and Heavy Ion Transport code System (PHITS) code. The calculated results were compared with data obtained by single-grain retrospective luminescence dosimetry of quartz inclusions in the brick sample. The calculated result agreed well with the measured data. The dose increase measured at the brick surface was explained by the beta-ray contribution, and the slight slope in the dose profile deeper in the brick was due to the gamma-ray contribution. The skin dose was estimated from the calculated result as 164 mGy over 3 years at the sampling site.

INTRODUCTION

The main fission products from the Fukushima Daiichi nuclear power plant (FDNPP) accident are 129mTe-129Te, 131I, 132Te-132I, 134Cs, 136Cs and 137Cs [1–4]. These radionuclides emit gamma rays and beta rays through β− decay. However, there are few studies about dose estimation from beta-ray irradiation following the FDNPP accident [5–7]. The beta-ray dose contributes to the whole-body dose among small biota, such as insects, plant leaves, and human skin. Therefore, beta-ray dose estimations are important for the risk assessment of the impact of the FDNPP accident (including on small biota) to clarify the effects of this large-scale radiological accident.
Retrospective dosimetry with brick samples has been used to evaluate the gamma-ray dose of the Hiroshima atomic bomb [8–10], the Chernobyl nuclear power plant accident [11–14], and the Semipalatinsk nuclear weapon testing [15, 16]. Recently, Stepanenko et al. [17] used retrospective dose evaluation of brick samples to estimate gamma-ray doses and perform beta-ray dose reconstruction for the FDNPP accident with a similar method to that used for a Hiroshima tile sample [18]. They used a single-grain quartz optically stimulated luminescence (OSL) method (similar to that of Ballarini et al. [19], although layer-by-layer consequences for very thin layers of the sample’s aliquots were used for analysis, with separate dose calibration for each quartz grain) with brick samples taken in 2014 from Odaka, Minami-Soma City, Fukushima Prefecture, Japan [17]. Dose enhancement near the surface of the brick was identified by the OSL measurements [17]. Stepanenko et al. suggested that the enhancement was caused by the beta-ray dose from the deposited fission products [17].
To establish the cause of the dose enhancement near the brick surface, we performed a Monte Carlo simulation of a small brick building with radionuclides uniformly distributed on the ground surface. The calculated results were compared with the data measured by Stepanenko et al. [17]. The depth profiles of the dose in the brick sample for beta rays and gamma rays were estimated separately, and the dose enhancement near the brick surface was discussed.
MATERIALS AND METHODS
Particle and Heavy Ion Transport code System calculation
The energy deposition as a function of depth in the brick wall of a small building was calculated using the Particle and Heavy Ion Transport code System (PHITS) Monte Carlo code Ver. 2.52 [20]. The calculation geometries are shown in Fig. 1. The calculation regions were 1 m × 1 m for beta rays and 21 m × 21 m for gamma rays. The calculation regions consisted of ground, air, and the small brick building (red region: 0.5 m × 0.5 m square, 1.5 m high, wall thickness of 10 cm). The brick building was located in the center of the soil surface. Beta- or gamma-ray sources were uniformly distributed in the 5-mm-thick soil surface (brown region). To save calculation time, the previously reported mirror condition was used for these calculations [21]. Figure 1a shows the geometry used to calculate the radiation that entered the calculation region (outer source calculation) via the mirror boundary. First, the histories for the particles were accumulated near the mirror boundary (green lines) without the brick building. Second, the particles were generated from the mirror boundary (back line) in Fig. 1b according to the accumulated histories. The generated particles were transported to the brick wall cells (yellow box) of the brick building. Third, radiation was generated from the surface of the 5-mm-thick soil layer (brown region) in the calculation region (inner source calculation) in Fig. 1b. The energy deposition in brick cell layers of 10 m × 10 cm and thicknesses of 0.1, 0.2, 0.3, 0.4, 0.5, 1, 3, 5, 7.5, 10, 20, 40, 60, 80 and 100 mm were obtained by summing the outer and inner source calculations corrected with the number of particles generated per unit area.

 

1.png

(a) Mirror condition calculation, (b) top view and (c) side view of the calculation geometry.

Beta and gamma rays from 129mTe, 129Te, 131I, 132Te, 132I, 134Cs and 137Cs were calculated separately. Beta-ray energy spectra were taken from the literature [5], and the internal conversion electrons of 137Cs were taken from the website of the National Nuclear Data Center [21]. The gamma-ray energies and emission rates for the radionuclides were taken from the National Nuclear Data Center [22].
 
The elemental composition of the brick sample was Si: 28.9, Si: 50.4, Al: 17.5, Fe: 1.4 and Ti: 1.8 wt %, and those of soil and air were taken from the literature [8].
Air dose and tissue dose calculation
 
The air and tissue dose rates at the i-th depth per unit deposition density of 1 Bq/m2, Dijk (Gy Bq−1 s−1 m2), for beta and gamma rays, were calculated from the calculated results of the energy deposition in brick as:
Dijk=Ij⋅fcajc∫∞0EijkmbdE(j=β,γ;k=129mTe,129Te,131I,132Te,132I,134Cs,137Cs),
(1) where Eijk is the energy deposition (J) at the i-th depth by beta or gamma rays from the k-th radionuclide, mb is the brick sample mass (kg), and aj is the area of the source (0.75 and 1 m2 for inner and outer beta calculations, 440.75 and 441 m2 for the inner and outer gamma calculations, respectively). Ij is the emission rate for beta or gamma rays per Bq and fc is the conversion factor of the stopping power ratio [23] for beta rays and the kerma ratio [24] for gamma rays between air or tissue and brick to convert from the brick dose to the air or tissue doses.
Cumulative dose estimation
 
The dose rate at the sampling point can be calculated by the measured deposition density, Ak, for each radionuclide at the sampling point of Odaka, Minami-Some City by multiplying the calculated result by Eq. 1. The change in dose rate over time is assumed to depend only on the half-lives of the radionuclides. Therefore, the cumulative dose, Ditot, for the i-th depth can be integrated by:
Ditot=∑k∑j∫τ0Ak⋅Dijk(12)tTkdt,
(2) where Tk is the half-life for each radionuclide of k = 129mTe, 129Te, 131I, 132Te, 132I, 134Cs and 137Cs (Table 1), and τ is the time period from deposition to the brick sampling date.

 

Capture du 2018-01-27 19-32-40

RESULTS AND DISCUSSION

Calculated dose rate for beta and gamma rays
 
A 137Cs deposition density of 308 kBq/m2 and the ratio of each radionuclide to 137Cs deposition density taken from the literature [1] were used to obtain Ak for each radionuclide. The deposition densities for the seven radionuclides are listed in Table 2. The beta-ray dose rates on the brick surface and gamma-ray dose rate at a depth of 0.5 mm in the brick at a height of 80 cm are shown in Fig. 2a and b, respectively. 129m, 129Te contributed less to the gamma-ray dose rate, and accounted for the third and fourth largest contribution to the beta-ray dose rate. This is due to the small gamma-ray emission rate per decay of 129m, 129Te of <10%. The gamma- and beta-ray doses decreased by ~10% and ~30%, respectively, over 1 month. The calculated beta-ray dose rate decreased slower than the calculated gamma-ray dose rate.

 

Capture du 2018-01-27 19-34-49.png

Capture du 2018-01-27 19-36-45.png

Capture du 2018-01-27 19-39-01

Air dose rates of (a) beta rays and (b) gamma rays over time.

Beck reported conversion factors for various radionuclides to estimate the air dose rate at a height of 1 m from the unit deposition density of radionuclides [25]. The initial gamma-ray air dose rates (15 March 2011) at a height of 80 cm from the ground for each radionuclide obtained by our calculations were compared with the values estimated by Beck conversion factors [25] interpolated at a relaxation depth of 0.65 g/cm2 (Table 2). The present dose rates were estimated to be 57% lower than those calculated by Beck conversion factors. The present dose rates were in-brick values in one of the walls of the brick building, whereas the Beck conversion factor values were free-in-air values. Therefore, the difference of 57% can be explained by shielding effects, whereby gamma rays from behind the building are neglected.
Cumulative dose
 
The cumulative dose over 3 years, from 12 March 2011 (Unit 1 explosion) to 19 March 2014 (brick sampling by Stepanenko et al.) and the dose rate change over time are shown in Fig. 3. The solid line shows the calculation result, the dashed histograms are the averaged calculation values for the measured sample thickness, and the open circles are Stepanenko’s data [17]. The calculation agreed well with the data measured by Stepanenko et al. in the region deeper than 10 mm. The results indicated that the cumulative dose deeper in the brick was due to gamma rays, and that the dose enhancement at the surface was dominated by the beta-ray contribution. The difference between the calculated and measured doses at the surface was about 2 standard deviations. A possible explanation might be connected with the contributions of low γ emission rate radionuclides, such as 89Sr, 127mTe-127Te, 140Ba-140La, etc. However, the trend in the dose increase at the brick surface was supported by the calculations. Therefore, the single-grain OSL measurement by Stepanenko et al. shows the advantage of dose estimations not only the cumulative gamma-ray dose but also the cumulative beta-ray dose. Thus, we concluded that the single-grain OSL method is a good tool for retrospective beta-ray dose estimation.

 

Capture du 2018-01-27 19-42-01.png

Comparison of the calculated beta rays (chain line), gamma rays (dotted line), beta + gamma rays (solid line), dose averaged over sample depth (dashed histogram), and data measured by Stepanenko et al. (open circles).

 

The calculated tissue dose at a brick depth of 50 μm was assumed to be a skin dose, and would be similar to a 70-μm tissue dose. The skin dose was estimated to be 164 mSv for 3 years at the sampling location.

CONCLUSION

To confirm the cause of the dose enhancement near the surface of a brick sample taken from Odaka, Minami-Soma City, Japan, a Monte Carlo calculation was performed using PHITS code and the calculated results were compared with measurements. The calculated results agreed well with previously published measured data. The dose enhancement at the brick surface in the measured data was explained by the beta-ray contribution, and the gentle slope in the dose profile deeper in the brick was due to the gamma-ray contribution. The calculated result estimated the skin dose to be 164 mGy (164mSv) over 3 years at the sampling location.

Source: https://academic.oup.com/jrr/advance-article/doi/10.1093/jrr/rrx099/4827065

 

January 27, 2018 Posted by | Fukushima 2018 | , , , | Leave a comment

Long-Term Exposure to Low-Dose Radiation and Cancer: Dr. David Richardson at the Hiroshima Peace Institute (EN & JP)

 

The initiation of the Manhattan project in 1943 marked the emergence of the discipline of health physics and an expansion of research on the health effects of ionizing radiation. The health effects of occupational exposure to radiation were viewed from different perspectives by different members of the Atomic Energy Commission (AEC). There were those with immediate concerns and a focus on issues related to wartime production and health effects which were definite biological changes which are immediately evident or are of prognostic importance to health. Others had an interest in a more general understanding the effects of radiation on human health, including long term and genetic consequences. There were also managerial concerns, which persist today; Stafford Warren, medical director of the program, encouraged health research to help strengthen the government’s interest in case of lawsuits or demands for workers’ compensation. These concerns motivated a large scale epidemiological program of research on nuclear workers. Beginning in the mid-1980’s, numerous publications on cancer among workers at nuclear facilities appeared, mostly in the US and UK. Risk estimates from individual studies were uncertain, with wide confidence intervals; and, positive associations between radiation and cancer were observed in some, but not all cohorts. To summarize results across studies and improve statistical precision, pooling projects were undertaken. This lecture reviews the history of these pooled studies and then presents results from the most recent, largest, and most informative of these analyses, known as INWORKS. This is a combined study of 308,297 nuclear workers from the United Kingdom, France, and the United States of America. Quantitative results are presented and the strengths and limitations of INWORKS are discussed. (Lecture at Hiroshima Peace Institute, 30 November 2017)

January 19, 2018 Posted by | radiation | , , , | Leave a comment

The Bioaccumulation of contamination in plankton

Capture du 2018-01-18 12-01-02.png

 

Quote (emphasis added) “Page 59. The problem of radioactive particles falling into the ocean raises the question of their availability to this portion of the biosphere. Plankton normally found in sea water are consumed in large quantities by fish.
 
These plankton concentrate mineral elements from the water, and it has been found that radioactivity may be concentrated (Page 60) in this manner by as much as a thousand fold. Thus, for example, one gram of plankton could contain a thousand times as much radioactivity as a gram of water adjacent to it. The radioactivity from these plankton which form a portion of fish diet tends to concentrate in the liver of the fish, and, if sufficiently high levels of contamination are encountered, could have a marked effect upon the ecology of an ocean area.
 
end quote

January 18, 2018 Posted by | radiation | , , | Leave a comment

Radiation Dose Is Meaningless

Dose is meaningless.jpg

 

In other words, where hot or warm particles or Plutonium or Uranium are located in body tissue or where sequentially decaying radionuclides like Strontium 90 are organically bound (e.g. to DNA) “dose” means nothing.
This is massively significant. Official radiation risk agencies universally quantify risk in terms of dose. If it means nothing the agencies know nothing and can give no valid advice.
Their public reassurances fall to the ground. They can no longer compare nuclear industry discharges with the 2 millisieverts we get every year from natural radiation, or the cosmic rays you’d receive flying to Tenerife for a holiday.
 
See this link for supporting quotes from the International Commission on Radiological Protection, Institut de Radioprotection et de Securite Nucleaire, the European Committee on Radiation Risk, the UK Department of Health, ICRP again (2009), and the Swedish Radiation Safety Authority. http://www.llrc.org/llrc/wobblyscience/subtopic/dosemeaningless2.htm
 
See this link for an account of how, when and why the world’s radsafers came to have an unscientific view. http://www.llrc.org/switcheroo.htm
 
 
Dose is meaningless
… emerging consensus
[This page from November 2006 is now updated with this new link to extracts from ICRP Publication 103 (the 2007 Recommendations) but its content otherwise remains unchanged. At the foot there is recent material on ICRP’s position.] http://www.llrc.org/llrc/wobblyscience/subtopic/dosemeaningless4.htm
The 2005 Recommendations of the International Commission on Radiological Protection: Draft for Consultation were published in late 2004. The final version has not been published at the date of writing (early November 2006) and ICRP tells us publication has in fact been set back by the IRSN’s report on the European Committee on Radiation Risk (ECRR).
Consultation on a second draft closed in the summer. Our responses can be seen on the ICRP site
The ICRP 2004 draft contains many statements revealing the incomplete state of knowledge of radiation risk. Many of them have been watered down in the 2006 draft or have disappeared altogether.
Here we reproduce extracts from the 2004 draft which confirm the validity of our long-standing concerns about heterogeneity of energy distribution. The ICRP’s response to heterogeneity is to employ assumptions. Most are individually questionable and when taken together, as they must be, they are simply not acceptable as a system of radiation protection. The upshot is that “dose” is an effectively meaningless term yet the industry’s regulators have no other terms with which to assess and quantify risks. Reassurances about “trivial doses” are revealed as empty.
“3.2. Summary of health effects caused by ionising radiation
(37) The relationship between radiation exposures and health effects is complex. The physical processes linking exposure and doses in human tissues involve energy transport at the molecular level. The biological links between this energy deposition and the resulting health effects involve molecular changes in cells. In Publication 60 (ICRP, 1991) , the Commission recognised that the gross (macroscopic) quantities used in radiological protection omitted consideration of the discontinuous nature of the physical and biological processes of ionisation. However, it concluded that their use was justified empirically by the observation that the gross quantities (with adjustments for different types of radiation) correlate reasonably well with the resulting biological effects. It further recognised that more use might eventually be made of other quantities based on the statistical distribution of events in a small volume of material, corresponding to the dimensions of biological entities such as the nucleus of the cell or its DNA. Meanwhile, for practical reasons, the Commission continues to use the macroscopic quantities.
[…]
3.3. Absorbed dose in radiological protection
(41) A particular feature of ionising radiations is their discontinuous interaction with matter. The related probabilistic nature of energy depositions results in distributions of imparted energy on a cellular and molecular level that are very heterogeneous at low doses. […]
(42) […] At the low doses generally of concern in radiological protection, the fluctuation of energy imparted can be substantial between individual cells and within a single hit cell. This is the case particularly for densely ionising radiations such as alpha-particles and charged particles from neutron interactions.
[…]
(44) Absorbed dose is defined based on the expectation value of the stochastic quantity e, energy imparted, and therefore does not consider the random fluctuation of the interaction events. It is defined at any point in matter and, in principle, is a measurable quantity, i.e. it can be determined experimentally and by computation. The definition of absorbed dose has the scientific rigour required for a fundamental quantity. It takes implicitly account of the radiation field as well as of all of its interactions inside and outside the specified volume. It does not, however, consider the atomic structure of matter and the stochastic nature of the interactions.
[…]
(46) For densely ionising radiation (charged particles from neutrons and alpha-particles) and low doses of low LET radiation, the frequency of events in most cells is zero, in a few it is one and extremely exceptionally more than one. The value of energy imparted in most individual cells is then zero but in the hit cells it will exceed the mean value by orders of magnitude. These large differences in the energy deposition distribution in microscopic regions for different types (and energies) of radiation have been related to observed differences in biological effectiveness or radiation quality.
(47) In the definition of radiological protection quantities no attempts are made to specify these stochastic distributions at a microscopic level. Even the quality factor used in the definition of operational quantities is dependent on LET only which also is a non stochastic quantity. Instead a pragmatic and empirical approach has been adopted to take account of radiation quality differences – and therefore implicitly also of the differences in distributions of energy imparted in microscopic regions – by defining radiation weighting factors. The selection of these factors is mainly a judgement based on the results of radiobiological experiments.
3.3.2. Radiological protection quantities: Averaging of dose
(48) While absorbed dose is defined to give a specific value (averaged in time) at any point in matter, averaging of doses over larger tissue volumes is often performed when using the quantity absorbed dose in practical applications, as in radiological protection. It is especially assumed for stochastic effects at low doses that such a mean value can be correlated with the risk of a detriment to this tissue with sufficient accuracy. The averaging of absorbed dose and the summing of mean doses in different organs and tissues of the human body, as given in the definition of all the protection quantities, is only possible under the assumption of a linear dose-response relationship with no threshold (LNT). All protection quantities rely on these hypotheses.
(49) Protection quantities are based on the averaging of absorbed dose over the volume of a specified organ or tissue. The extent to which the average absorbed dose in an organ is representative of the absorbed dose in all regions of the organ depends on a number of factors. For external radiation exposure, this depends on the degree of penetration of the radiation incident on the body. For penetrating radiation (photons, neutrons) , the absorbed dose distribution within a specified organ may be sufficiently homogeneous and thus the average absorbed dose is a meaningful measure of the absorbed dose throughout the organ or tissue. For radiation with low penetration or limited range (low-energy photons, charged particles) as well as for widely distributed organs (e.g. bone marrow) exposed to non-uniform radiation flux, the absorbed dose distribution within the specified organ may be very heterogeneous.
(50) For radiations emitted by radionuclides residing within the organ or tissue, so-called internal emitters, the absorbed dose distribution in the organ depends on the penetration and range of the radiations and the homogeneity of the activity distribution within the organs or tissues. The absorbed dose distribution for radionuclides emitting alpha particles, soft beta particles, low-energy photons, and Auger electrons may be highly heterogeneous. This heterogeneity is especially significant if radionuclides emitting low-range radiation are deposited in particular parts of organs or tissues, e.g. plutonium on bone surface or radon daughters in bronchial mucosa and epithelia. In such situations the organ-averaged absorbed dose may not be a good dose quantity for estimating the stochastic damage. The applicability of the concept of average organ dose and effective dose may, therefore, need to be examined critically in such cases and sometimes empirical and pragmatic procedures must be applied. ICRP has developed dosimetric models for the lungs, the gastrointestinal tract and the skeleton that take account of the distribution of radionuclides and the location of sensitive cells in the calculation of average absorbed dose to these tissues.
3.3.3. Radiation weighted dose and effective dose
(51) The definition of the protection quantities is based on the mean absorbed dose …
It seems perverse that having admitted so many flaws in the concept of absorbed dose ICRP simply continues to use it.
The 1991 assertion (see ICRP para. 37 above) that the use of macroscopic quantities is justified empirically is not acceptable. In the ensuing 15 years developments in cell biology and epidemiology, particularly following Chernobyl, have rendered it unsafe. The European Committee on Radiation Risk (ECRR) has recently developed weighting factors to compensate for some of the shortcomings of the ICRP approach. IRSN’s 2005 report on ECRR states: http://www.euradcom.eu/2005/irsn%20rapport%20ecrr-en.pdf
“Various questions raised by the ECRR are quite pertinent and led IRSN to analyze this document with a pluralistic approach.
a. Besides natural and medical exposures, populations are basically undergoing low dose and low dose rate prolonged internal exposures. But the possible health consequences under such exposure conditions are ill-known. Failing statistically significant observations, the health consequences of low dose exposures are extrapolated from data concerning exposures that involve higher dose rates and doses. Also, few epidemiologic data could be analyzed for assessing inner exposure effects. The risks were thus assessed from health consequences observed after external exposure, considering that effects were identical, whether the exposure source is located outside or inside the human body. However, the intensity, or even the type of effects might be different.
b. The pertinence of dosimetric values used for quantifying doses may be questioned. Indeed, the factors applied for risk management values are basically relying on the results from the Hiroshima and Nagasaki survivors’ monitoring. It is thus not ensured that the numerical values of these factors translate the actual risk, regardless of exposure conditions, and especially after low dose internal exposure.
c. Furthermore, since the preparation of the ICRP 60 publication, improvements in radiobiology and radiopathology, or even in general biology, might finally impair the radiation cell and tissue response model applied to justify radioprotection recommendations. It was thus justified to contemplate the impact of such recent observations on the assessment of risk induced by an exposure to ionizing radiation.”
IRSN’s report concludes:
“The phenomena concerning internal contamination by radionuclides are complex because they involve numerous physico-chemical, biochemical and physiological mechanisms, still ill-known and thus difficult to model. Due to this complexity, the behaviour of radionuclides in the organism is often ill described and it is difficult to accurately define a relationship between the dose delivered by radionuclides and the observed consequences on health. This led the radioprotection specialists to mostly use the dose/risk relationships derived from the study of the Hiroshima/Nagasaki survivors, exposed in conditions very different from those met in the cases of internal contaminations.
This fact raises numerous questions, which should be considered with caution because a wide part of the public exposure in some areas of the world is due to chronic internal contaminations and very few data concern these situations.
[…] the questions raised by the ECRR are fully acceptable, … ”
and
“… we do not possess, in the current state of knowledge, the elements required to improve the existing radioprotection system.”
We realise that we are inviting the rejoinder that IRSN also says:
[however] “the fact is that the [ECRR’s] arguments stated to justify this doctrine modification are not convincing, as the demonstration as a whole does not meet the criteria of a strict and consistent scientific approach.”
and
“the existing radioprotection system corresponds to the best tool being available at present for protecting human from the deleterious effects of ionizing radiations.”
and
“… a significant improvement of the radioprotection system in the field of internal contamination [can be] conceivable only by development of studies and research. ”
See this link for ECRR’s response to various points made by IRSN, and for the IRSN report itself. http://www.euradcom.eu/2005/irsn.htm
IRSN’s statements are a bizarre double standard; they have agreed with ECRR’s criticisms of the ICRP system, which on that basis can itself be described as “not meet[ing] the criteria of a strict and consistent scientific approach” (as IRSN demands of ECRR). IRSN’s subsequent call for more research may be only what is expected of scientists, but such research would take years. Policy makers and stakeholders engaged in decommissioning have to make decisions now.
CERRIE: DOSE IS “MEANINGLESS”
… There are important concerns with respect to the heterogeneity of dose delivery within tissues and cells from short-range charged particle emissions, the extent to which current models adequately represent such interactions with biological targets, and the specification of target cells at risk. Indeed, the actual concepts of absorbed dose become questionable, and sometimes meaningless, when considering interactions at the cellular and molecular levels.
from CERRIE (Government’s Committee Examining Radiation Risks of Internal Emitters) Majority Report Chapter 2 Risks from Internal Emitters Part 2 paragraph 11. See http://www.cerrie.org for full report.
See this site for the Minority Report http://www.llrc.org/wobblyscience/subtopic/cerrie.htm
 
And the Department of Health’s Radiation Protection Research Strategy July 2006 – could be LLRC’s shoppping list. http://www.llrc.org/wobblyscience/subtopic/dosemeaningless3.htm
 
ICRP throws in the towel
At a meeting in Stockholm, 22 April 2009, Dr Jack Valentin, Scientific Secretary Emeritus of the ICRP admitted that ICRP’s risk model could not be applied to post-accident exposures because the uncertainties were two orders of magnitude. (see transcript) http://www.llrc.org/llrc/health/subtopic/icrpabdicates.htm
The next day, Deputy Director of Strålsäkerhetsmyndigheten, Carl-Magnus Larsson also said the ICRP model could not be used to predict the health consequences of accidents. He added that for elements like Strontium and Uranium which bind to DNA national authorities would have the responsibility to assess the risks. Another SRM member said that the Secondary Photoelectron Effect was well recognised, also that in 1977 the ICRP had considered a weighting factor ”n” for elements which bind to DNA but had not implemented it.

 

January 5, 2018 Posted by | radiation | , , | Leave a comment