The News That Matters about the Nuclear Industry Fukushima Chernobyl Mayak Three Mile Island Atomic Testing Radiation Isotope

Court rules that U.S. Dept of Energy can stop construction of a $17 billion plutonium and uranium fuel factory


October 18, 2018 Posted by | Legal, technology | Leave a comment

Public-private partnerships for new nukes – USA’s Nuclear Energy Innovation Capabilities Act (NEICA)

Nuclear innovation legislation becoming law, Post Register., Mike Crapo, a U.S. Senator, 16 Oct 18

Congress’s recent passage of S. 97, the Nuclear Energy Innovation Capabilities Act (NEICA)   ……….  Senators Lisa Murkowski (R-Alaska), Cory Booker (D-New Jersey), Orrin Hatch (R-Utah) and Dick Durbin (D-Illinois) also co-sponsored this legislation that directs the U.S. Department of Energy (DOE) to prioritize partnerships with private innovators to test and demonstrate advanced reactor concepts.

The measure authorizes the creation of a National Reactor Innovation Center that brings together the technical expertise of the National Labs and the DOE to enable the construction and testing of experimental reactors. The Nuclear Regulatory Commission (NRC) would partner with the DOE in this effort, contributing its expertise on safety issues while also learning about the new technologies developed through the Center. This legislation strengthens the ability of national laboratories, like Idaho National Laboratory (INL), to partner with private industry to prove the principles behind their research.  ………ttps://

October 18, 2018 Posted by | politics, technology, USA | Leave a comment

Global nuclear lobby desperate to market an array of non existent Small and Medium Nuclear Reactors (SMRs)

IAEA Showcases Global Coordination on Small, Medium Sized or Modular Nuclear Reactors (SMRs) IAEA, October 2018   Vienna, Austria The International Atomic Energy Agency’s (IAEA) expanding international coordination on the safe and secure development and deployment of small, medium sized or modular nuclear reactors (SMRs) has come into focus with new publications and expert meetings on these emerging technologies.

Significant advances have been made in recent years on SMRs, some of which will use pre-fabricated systems and components to shorten construction schedules and offer greater flexibility and affordability than traditional nuclear power plants. Some 50 SMR concepts are at various stages of development around the world, with commercial operations expected to begin in the coming years.

Following an IAEA meeting in September on SMR design and technology, energy experts from around Europe gathered at the Agency’s Vienna headquarters for a workshop earlier this month to discuss infrastructure, economic and finance aspects of SMRs. The meetings are part of an ongoing SMR project involving the IAEA Departments of Nuclear Energy, Nuclear Safety and Security and Technical Cooperation. In addition, representatives of regulatory authorities and other stakeholders also met this month at the IAEA’s SMR Regulators’ Forum, which exchanges experiences on SMR regulatory reviews.

Many IAEA Member States are interested in the development and deployment of SMRs as a cleaner alternative to fossil fuels and for reducing greenhouse gas emissions,” said IAEA Deputy Director General Mikhail Chudakov, Head of the Department of Nuclear Energy. “The IAEA’s flurry of recent activities on SMRs is part of our efforts to respond to Member State requests for assistance on this exciting emerging technology.”

The IAEA recently released two new publications on SMRs: Deployment Indicators for Small Modular Reactors, which provides Member States with a methodology for evaluating the potential deployment of SMRs in their national energy systems; and an updated edition of Advances in Small Modular Reactor Technology Developments, which provides a concise overview of the latest status of SMR designs around the world and is intended as a supplement to the IAEA’s Advanced Reactor Information System (ARIS)…….

October 16, 2018 Posted by | Small Modular Nuclear Reactors, spinbuster | Leave a comment

Hitachi and General Electric headed for another nuclear financial fiasco- small modular reactors?

October 16, 2018 Posted by | Small Modular Nuclear Reactors | Leave a comment

S.C. Gov. Henry McMaster and U.S. Sen. Lindsey Graham want Trump to continue with MOX nuclear fuel boondoggle

October 16, 2018 Posted by | politics, technology | Leave a comment

Nuclear lobby spreads confusion as it touts “SMRs” – nuclear fantasy research

Steve Dale Nuclear Fuel Cycle Watch South Australia, October 10

Small Modular Reactors don’t exist yet, and the picture below shows that the size of these speculative reactors are far from “small” (red arrow points to tiny human figure). Yet Barry Brook continues to receive funding from the “Australian Research Council” to investigate all things nuclear, including putting these reactors on small islands. How much money has gone to funding pro-nuclear fantasy research?

Noel Wauchope they are now referred to by IAEA as small and medium reactors (SMRs)…..A subcategory of very small reactors – vSMRs – is proposed for units under about 15 MWe, especially for remote communities……..Note that many of the designs described are not yet actually taking shape. ……. There’s a bewildering array of reactor designs, listed in MWe (MegaWatts electic) -not in physical size.

October 13, 2018 Posted by | AUSTRALIA, Small Modular Nuclear Reactors | Leave a comment

MOX nuclear fuel plant in South Carolina “on life support”, following court case

Plans for jobs-rich but potentially deadly nuclear fuel plant on life support in SC

Sammy Fretwell, The State  Oct. 10, 2018 The federal government won a court victory Tuesday that could lead to the shutdown of a nuclear construction project that is billions of dollars over-budget and years from completion at the Savannah River Site near Aiken.

In an afternoon ruling, the U.S. Fourth Circuit Court of Appeals overturned a lower court ruling that had halted the U.S. Department of Energy’s effort to quit building the mixed oxide fuel factory after a decade of construction. The ruling Tuesday sets aside a June 7 preliminary injunction that had stopped government plans to halt construction.

The decision was a blow to advocates of the plant in South Carolina. Key politicians have pushed to keep building the project — known as MOX — because it will be a jobs provider and a way to get rid of surplus plutonium at the Savannah River Site weapons complex near Aiken. At one point, as many as 2,000 jobs were touted for the project.

S.C. Attorney General Alan Wilson, who sued to force the government to keep building the plant, wasn’t happy with the ruling Tuesday. Wilson says failing to build the plant would mean plutonium, a deadly nuclear material, would be left in South Carolina.

While the ruling Tuesday lifts the injunction, Wilson’s lawsuit has not been decided.

“I’m disappointed in the Fourth Circuit panel’s decision,’’ Wilson said in a statement. “It is inconsistent with governing law and foreshadows the court’s opinion in the case. The state intends to vigorously contest the opinion when it is issued to protect the State’s interests and prevent the Department of Energy from turning the State into the dumping ground for plutonium.’’

Opponents of the plant, which is at least $12 billion over budget, said the court’s decision Tuesday could be the beginning of the end of the project. They say it is a waste of taxpayer money and is a dangerous way to get rid of surplus bomb-grade plutonium when other means are available.

The DOE, after years of pumping up the plant, now says it isn’t worth continuing. The project has been beset with delays and questionable workmanship.

“This is going to allow (the DOE) to start back up with termination,’’ said one of the project’s harshest critics, Tom Clements, who heads Savannah River Site Watch.

The Union of Concerned Scientists, a national environmental group that opposes MOX, issued a late afternoon statement praising the court’s decision.

Critics say a plutonium fuel factory isn’t necessary because there are other ways of disposing of excess weapons grade plutonium. The government has more recently proposed shipping much of the excess plutonium at SRS to a site in New Mexico.

“Using this type of facility to dispose of plutonium that is no longer needed for U.S. nuclear weapons increases the risk that this material could fall into the hands of terrorists,” according to an email from Edwin Lyman, a senior scientist with the Global Security Program at the Union of Concerned Scientists. “Although the order is only a temporary stay, it indicates that the court will likely rule against the South Carolina in favor of the DOE’s plan to terminate the MOX project and pursue a far superior alternative.”

October 11, 2018 Posted by | Legal, technology | Leave a comment

The dangers and unknown challenges of Russia’s plan for floating nuclear power plants in Northeast Asia

Floating Nuclear Power Plants in Northeast Asia? A Daunting Prospect.  Weak multilateral architecture, territorial disputes, and natural disaster vulnerability compound the unknowns of Russia’s new energy platform. The Diplomat, By Tom Corben October 05, 2018 Given the controversy of all things nuclear power in the post-Fukushima era, it was no surprise that the April launch of Russia’s first floating nuclear power plant (FNPP), the Akademik Lomonosov, drew polarizing responses immediately (in spite of the fact that its nuclear fuel was only loaded earlier this week). Russia’s state-owned nuclear utility Rosatom, claimed that the Akademik Lomonosov’s safety precautions exceed “all possible threats,” granting it “invincibility against natural disasters,” and highlighted the enhancements to economic development efforts in Russia’s far-flung territories. Conversely, environmental organizations like Greenpeace labeled the Akademik Lomonosov a “nuclear titanic” or “Chernobyl on ice,” a serious risk to the global environmental and human security. Observers ought to regard warily the sensationalist claims of advocates and opponents of FNPPs alike. Even so, it is difficult not to view Rosatom’s “invincibility” claim without incredulity.

Rosatom has previously claimed in safety briefings to the International Atomic Energy Agency (IAEA) that the Akademik Lomonosov could withstand a magnitude-10 earthquake, tsunamis powerful enough to cast the barge ashore, and even the impact of a 10-ton aircraft. However, disasters such as that at Fukushima in March 2011 show the perils of blind faith in the integrity of nuclear technology and existing safety regimes that claim to preclude all possible disaster scenarios, particularly those where consecutive or compounding disaster events may present unforeseen challenges. That the Akademik Lomonosov is essentially the first of its kind (the comparatively small USS Sturgis aside) means that practitioners and observers alike have little historical experience to draw upon in offering completely watertight safety assessments. Commentators have pointed to nuclear-powered carriers and submarines to counter criticisms that seaborne reactors are inherently dangerous, yet several such vessels have sunk in the past, along with their radioactive cargo. There is, however, no precedent for a reactor complex the size of the Akademik Lomonosov’s going down in coastal or blue waters, nor for the sorts of short- or long-term hazards that may result or the responses that may be required.

These unknown risks are particularly accentuated when framed in the Northeast Asian context. Either the Akademik Lomonosov or one of its successors will reportedly head for the seismically-active Kamchatka Peninsula, which lies north of the Kuril Island chain presently disputed by Japan and Russia. The Sanchi oil tanker disaster in January demonstrated that the region’s geopolitical faultlines can complicate multilateral responses to industrial-environmental threats when they occur in or impact upon disputed territories, even when multilateral fora designed to facilitate collective risk management response to ocean-born hazards already exist. As far as FNPPs are concerned, these mechanisms do not presently account for potential radiological crises. In short, Northeast Asian states will need to move quickly and recalibrate existing institutions accordingly if they are to preclude another serious geopolitically-charged, potentially radiological, environmental disaster.

The Akademik Lomonosov features two KLT-40C reactors (variants of the military-grade KLT-40M model used aboard Russian icebreakers), capable of generating 70MWe — enough energy to provide power and desalinated water for between 100,000200,000 people. These impressive statistics aside, however, neither the KLT-40C model nor Russia’s overall nuclear safety record are entirely reassuring. In May 2011, for example, the Russian icebreaker Taymyr experienced a severe coolant leak, releasing radioactivity into the atmosphere, and needed to be towed into port for urgent repairs — all this despite recent safety upgrades. There are also several cases of Russian nuclear submarines sinking with hundreds of kilos of uranium and/or nuclear-tipped missiles still aboard, most notably the K-159 wreck in the Barents Sea, though what threat these might pose to the local environment remains unknown.

Furthermore, the appeal of FNPPs as a portable baseline power source for developing distant territories could become a significant setback in the event of a crisis of “unforeseeable” circumstances. Remote territories are just that — remote. In the event of a serious crisis, and considering the absence of local Russian nuclear infrastructure, it may take considerable time for a response team to reach the vessel. That would translate into more time for said crisis to spiral further.

Compounding the tyranny of distance is the region’s geological volatility. A magnitude 7.8 earthquake struck the Kamchatka Peninsula last July, while magnitude 8 quakes struck the Kuril Islands in 2006 and 2007, generating 50-foot tsunamis. While none of these instances resulted in major damage, in 1952 a massive earthquake and tsunami killed thousands and wrought destruction on settlements across the peninsula and the Kuril Islands. In fact, recent research has also demonstrated that seismic and volcanic activity in Russia’s Far East poses a serious natural disaster threat to the entire Pacific Rim. As far as the Akademik Lomonosov is concerned, some argue that its flat-bottomed hull design and lack of self-propulsion increases its vulnerabilityto impending or sudden disaster events. With a registered top speed of only 4 miles per hour with the assistance of tugboats, the task of avoiding an oncoming threat would become all the more difficult. For the sake of comparison, nuclear-powered carriers can hit anywhere between 55-92 kilometers (34-57 miles) per hour unassisted.

In a worst case scenario, a damaged or sinking FNPP could pose a regional radiological threat, one quickly compounded should the vessel be cast toward or into disputed territories or those of another state. Events in January suggest that Northeast Asia is unprepared for such an event. A slow response to the Sanchi oil tanker incident saw the burning vessel drift out of recognized Chinese waters and into those adjacent to the disputed Senkaku/Diaoyu Islands, where it eventually sank. Neither Beijing nor Tokyo moved to assume control of clean-up operations because of these geopolitical tensions, yet their inaction ironically saw the corruption of adjacent common fishing grounds.

In response, commentators (including myself) called for the creation of a regional disaster response agreement capable of bypassing competing territorial claims in the interests of containing similar catastrophes in the future…….

The likely arrival of FNPPs in Asia in the future will bring with them unprecedented risks that should not be discounted if states are serious about avoiding, or at least preparing for, an unprecedented radiological crisis of regional proportions.

October 8, 2018 Posted by | ASIA, Russia, safety, technology | Leave a comment

Thorium Molten Salt Nuclear reactor (MSR) No Better Than Uranium Process

The safety issue is also not resolved, as stated above: pressurized water leaking from the steam generator into the hot, radioactive molten salt will explosively turn to steam and cause incredible damage.  The chances are great that the radioactive molten salt would be discharged out of the reactor system and create more than havoc.  Finally, controlling the reaction and power output, finding materials that last safely for 3 or 4 decades, and consuming vast quantities of cooling water are all serious problems.  

The greatest problem, though, is likely the scale-up by a factor of 500 to 1, from the tiny project at ORNL to a full-scale commercial plant with 3500 MWth output.   Perhaps these technical problems can be overcome, but why would anyone bother to try, knowing in advance that the MSR plant will be uneconomic due to huge construction costs and operating costs, plus will explode and rain radioactive molten salt when (not if) the steam generator tubes leak.

The Truth About Nuclear Power – Part 28, Sowells Law Blog , 14 July 2014 Thorium MSR No Better Than Uranium Process, 

Preface   This article, number 28 in the series, discusses nuclear power via a thorium molten-salt reactor (MSR) process.   (Note, this is also sometimes referred to as LFTR, for Liquid Fluoride Thorium Reactor)   The thorium MSR is frequently trotted out by nuclear power advocates, whenever the numerous drawbacks to uranium fission reactors are mentioned.   To this point in the TANP series, uranium fission, via PWR or BWR, has been the focus.  Some critics of TANP have already stated that thorium solves all of those problems and therefore should be vigorously pursued.  Some of the critics have stated that Sowell obviously has never heard of thorium reactors.   Quite the contrary, I am familiar with the process and have serious reservations about the numerous problems with thorium MSR.

It is interesting, though, that nuclear advocates must bring up the MSR process.  If the uranium fission process was any good at all, there would be no need for research and development of any other type of process, such as MSR and fusion. Continue reading

October 5, 2018 Posted by | 2 WORLD, Reference, technology, thorium | Leave a comment

Trump Signs Legislation to Promote Advanced Nuclear Reactor Technology

The bill reinforces the administration’s efforts to revitalize the U.S. nuclear industry.
GreenTech Media 

It also directs the DOE to facilitate the siting of advanced reactor research demonstration facilities through partnerships with private industry.

On the technical side, the legislation requires DOE to develop a fast test reactor, or fast neutron source, used for testing advanced reactor fuels and materials. The U.S. doesn’t currently have this capability.

October 5, 2018 Posted by | politics, technology, USA | Leave a comment

Another nuclear film advertisement – “The New Fire”

Film review:  ‘The New Fire’ and the old Gen IV rhetoric  Author: Jim Green ‒ Nuclear Monitor editor NM866.4751, October 2018   The New Fire is a pro-nuclear propaganda film directed and produced by musician and film-maker David Schumacher.It’s similar in some respects to the 2013 film Pandora’s Promise.1,2 The New Fire premiere was held in October  2017 and it can be streamed online from 18 October 2018.

Promotional material claims that the film lacked “a supportive grant” (and celebrity endorsements and the backing of a major NGO) but the end-credits list numerous financial contributors: Berk Foundation, Isdell Foundation, Steven & Michele Kirsch Foundation, Rachel Pritzker, Roland Pritzker, Ray Rothrock, and Eric Uhrhane.

The film includes interviews with around 30 people (an overwhelming majority of them male) interspersed with footage of interviewees walking into buildings, and interviewees smiling. The musical underlay is a tedious drone ‒ a disappointment given Schumacher’s musical background.

A highlight is hearing Eric Meyer ‒ an opera singer turned pro-nuclear activist ‒ bursting into song at various locations around the COP21 climate conference in Paris in December

2015, while he and his colleagues handed out free copies of the pro-nuclear book Climate Gamble  Interviewees are mostly aging but the film’s main  message is that young entrepreneurs may save the  planet and its inhabitants with their Generation IV reactor projects. The film’s website states: “David Schumacher’s film focuses on how the generation facing the most severe impact of climate change is fighting back with ingenuity and hope. The New Fire tells a provocative and startlingly positive story about a planet in crisis and the young heroes who are trying to save it.”3

Schumacher writes (in the press kit): “These brilliant young people – some of the most gifted engineers of their generation, who in all likelihood could have cashed in for a fortune by doing something else – believe deeply that nuclear power could play a key role in saving the planet. And they are acting on that conviction. They did the research. They raised the money. They used cutting edge computer technology to perfect their designs. They are the new face of nuclear power, and to me, the newest and most unlikely climate heroes.”

These climate heroes are contrasted with anti-nuclear environmentalists. One interviewee says that “people of our generation are the first ones that have the opportunity to look at nuclear power without all the emotional baggage that previous generations have felt.” Another argues that anti-nuclear environmentalists are “very good, decent, smart people” but the “organizational DNA … that they have inherited is strongly anti-nuclear.” Another argues that environmental organizations “have been using nuclear power as a whipping boy for decades to raise funds”. Another interviewee attributes opposition to nuclear power to an “irrational fear of the unknown” (which surely poses a problem for the exotic Generation IV concepts promoted in the film) and another says that “once people sort of understand what’s going on withnuclear, they are much more open to it”.

The film trots out the usual anti-renewables tropes and falsehoods: 100% renewables is “just a fantasy”, renewables can contribute up to 20% of power supply and the remainder must be baseload: fossil fuels or nuclear power.

In rural Senegal, solar power has brought many benefits but places like Senegalese capital Dakar, with a population of one million, need electricity whether the sun is shining or not. A Senegalese man interviewed in the film states: “Many places in Africa definitely need a low cost, reliable, carbon neutral power plant that provides electricity 24/7. Nuclear offers one of the best options we have to do that kind of baseload.” The film doesn’t explain how a 1,000 megawatt nuclear plant would fit into Senegal’s electricity grid, which has a total installed capacity of 633MW.4 The ‘microreactors’ featured in The New Fire might help … if they existed.

Accidents such as those at Fukushima and Chernobyl get in the news because they are “so unusual” according to interviewee Ken Caldeira. And they get in the news, he might have added, because of the estimated death tolls (in the thousands for Fukushima5, ranging to tens of thousands for Chernobyl6), the costs (around US$700 billion for Chernobyl7, and US$192 billion (and counting) for Fukushima8), the evacuation of 160,000 people after the Fukushima disaster and the permanent relocation of over 350,000 people after the Chernobyl disaster.9

“Most people understand that it’s impossible for a nuclear power plant to literally explode in the sense of an atomic explosion”, an interviewee states. And most people understand that chemical and steam explosions at Chernobyl and Fukushima spread radionuclides over vast distances. The interviewee wants to change the name of nuclear power plants to avoid any conflation between nuclear power and weapons. Evidently he didn’t get the memo that the potential to use nuclear power plants (and related facilities) to produce weapons is fast becoming one of the industry’s key marketing points.

Conspicuously absent from the film’s list of interviewees is pro-nuclear lobbyist Michael Shellenberger. We’ve taken Shellenberger to task for his litany of falsehoods on nuclear and energy issues10 and his bizarre conversion into an advocate of worldwide nuclear weapons proliferation.11 But a recent article by Shellenberger on Generation IV nuclear technology is informative and insightful ‒ and directly at odds with the propaganda in The New Fire.12

So, let’s compare the Generation IV commentary in The New Fire with that in Shellenberger’s recent article.

Transatomic Power’s molten salt reactor concept The film spends most of its time promoting Generation IV reactor projects including Transatomic Power’s molten salt reactor (MSR) concept. [Ed note. recently failed and abandoned] .

Scott Nolan from venture capital firm Founders Fund says that Transatomic satisfies his four concerns about nuclear power: safety, waste, cost, proliferation. And he’s right ‒ Transatomic’s MSRs are faultless on all four counts, because they don’t exist. It’s doubtful whether they would satisfy any of the four criteria if they did actually exist.

Shellenberger quotes Admiral Hyman Rickover, who played a leading role in the development of nuclear-powered and armed submarines and aircraft carriers in the US: “Any plant you haven’t built yet is always more efficient than the one you have built. This is obvious. They are all efficient when you haven’t done anything on them, in the talking stage. Then they are all efficient, they are all cheap. They are all easy to build, and none have any problems.”

Shellenberger goes on to say:12 “The radical innovation fantasy rests upon design essentialism and reactor reductionism. We conflate the 2-D design with a 3-D design which we conflate with actual building plans which we conflate with a test reactor which we conflate with a full-sized power plant.

 “These unconscious conflations blind us to the many, inevitable, and sometimes catastrophic “unknowns” that only become apparent through the building and operating of a real world plant. They can be small, like the need for a midget welder, or massive, like the manufacturing failures of the AP1000.

“Some of the biggest unknowns have to do with radically altering the existing nuclear workforce, supply chain, and regulations. Such wholesale transformations of the actually existing nuclear industry are, literally and figuratively, outside the frame of alternative designs.

“Everyone has a plan until they get punched in the face,” a wise man once said. The debacles with the AP1000 and EPR are just the latest episodes of nuclear reactor designers getting punched in the face by reality.”

 Shellenberger comments on MSR technology:12

New designs often solve one problem while creating new ones. For example, a test reactor at Oak Ridge National Laboratory used chemical salts with uranium fuel dissolved within, instead of water surrounding solid uranium fuel. “The distinctive advantage of such a reactor was that it avoided the expensive process of fabricating fuel elements, moderator, control rods, and other high precision core components,” noted Hewlett and Holl.

 “In the eyes of many nuclear scientists and engineers these advantages made the homogeneous reactor potentially the most promising of all types under study, but once again the experiment did not reveal how the tricky problems of handling a highly radioactive and corrosive fluid were to be resolved.”

In The New Fire, Mark Massie from Transatomic promotes a “simpler approach that gives you safety through physics, and there’s no way to break physics”. True, you can’t break physics, but highly radioactive and corrosive fluids in MSRs could break and rust pipes and other machinery.

Leslie Dewan from Transatomic trots out the silliest advantage attributed to MSRs: that they are meltdown-proof. Of course they are meltdown-proof ‒ and not just in the sense that they don’t exist. The fuel is liquid. You can’t melt liquids. SMR liquid fuel is susceptible to dispersion in the event of steam explosions or chemical explosions or fire, perhaps more so than solid fuels.

Michael Short from MIT says in the film that over the next 2‒3 years they should have preliminary answers as to whether the materials in Transatomic MSRs are going to survive the problems of corrosion and radiation resistance. In other words, they are working on the problems ‒ but there’s no guarantee of progress let alone success.

Dewan claims that Transatomic took an earlier MSR design from Oak Ridge and “we were able to make it 20 times as power dense, much more compact, orders of magnitude cheaper, and so we are commercializing our design for a new type of reactor that can consume existing stockpiles of nuclear waste.”

Likewise, Jessica Lovering from the Breakthrough Institute says: “Waste is a concern for a lot of people. For a lot of people it’s their first concern about nuclear power. But what’s really amazing about it is that most of what we call nuclear waste could actually be used again for fuel. And if you use it again for fuel, you don’t have to store it for tens of thousands of years. With these advanced reactors you can close the fuel cycle, you can start using up spent fuel, recycling it, turning it into new fuel over and over again.”

But in fact, prototype MSRs and fast neutron reactors produce troublesome waste streams (even more so than conventional light-water reactors) and they don’t obviate the need for deep geological repositories. A recent article in the Bulletin of the Atomic Scientists ‒ co-authored by a former chair of the US Nuclear Regulatory Commission ‒ states that “molten salt reactors and sodium-cooled fast reactors – due to the unusual chemical compositions of their fuels – will actually exacerbate spent fuel storage and disposal issues.”13 It also raises proliferation concerns about ‘integral fast reactor’ and MSR technology:

“Pyroprocessing and fluoride volatility-reductive extraction systems optimized for spent fuel treatment can – through minor changes to the chemical conditions – also extract plutonium (or uranium 233 bred from thorium).”

Near the end of the film, it states: “Transatomic encountered challenges with its original design, and is now moving forward with an updated reactor that uses uranium fuel.” Transatomic’s claim that its ‘Waste-Annihilating Molten-Salt Reactor’ could “generate up to 75 times more electricity per ton of mined uranium than a light-water reactor” was severely downgraded to “more than twice” after calculation errors were discovered. And the company now says that a reactor based on the current design would not use waste as fuel and thus would “not reduce existing\ stockpiles of spent nuclear fuel”

So much for all the waste-to-fuel rhetoric scattered throughout The New Fire.

Michael Short from MIT claims MSRs will cost a “couple of billion dollars” and Dewan claims they will be “orders of magnitude cheaper” than the Oak Ridge experimental MSR. In their imaginations, perhaps. Shellenberger notes that “in the popular media and among policymakers, there has remained a widespread faith that what will make nuclear power cheaper is not greater experience but rather greater novelty. How else to explain the excitement for reactor designs invented by teenagers in their garages and famous software developers [Bill Gates / TerraPower] with zero experience whatsoever building or operating a nuclear plant?”12

Shellenberger continues:12

Rather than address the public’s fears, nuclear industry leaders, scientists, and engineers have for decades repeatedly retreated to their comfort zone: reactor design innovation. Designers say the problem isn’t that innovation has been too radical, but that it hasn’t been radical enough. If only the coolant were different, the reactors smaller, and the building methods less conventional, they insist, nuclear plants would be easier and cheaper to build.

“Unfortunately, the historical record is clear: the more radical the design, the higher the cost. This is true not only with the dominant water-cooled designs but also with the more exotic designs ‒ and particularly sodium-cooled ones.”

Oklo’s sodium-cooled fast neutron microreactor The New Fire promotes Oklo’s sodium-cooled fast neutron microreactor concept, and TerraPower’s sodium cooled fast neutron ‘traveling wave’ reactor (TerraPower is also exploring a molten chloride fast reactor concept).

Oklo co-founder Jacob DeWitte says: “There’s this huge, awesome opportunity in off-grid markets, where they need power and they are relying on diesel generators … We were talking to some of these communities and we realized they use diesel because it’s the most energy dense fuel they know of. And I was like, man, nuclear power’s two million times as energy dense … And they were like, ‘Wait, are you serious, can you build a reactor that would be at that size?’ And I said, ‘Sure’.”

Which is all well and good apart from the claim that Oklo could build such a reactor: the company has a myriad of economic, technological and regulatory hurdles to overcome. The film claims that Oklo “has begun submission of its reactor’s license application to the [US] Nuclear Regulatory Commission” but according to the NRC, Oklo is a “pre-applicant” that has gone no further than to notify the NRC of its intention to “engage in regulatory interactions”.16

There’s lots of rhetoric in the film about small reactors that “you can roll … off the assembly line like Boeings”, factory-fabricated reactors that “can look a lot like Ikea furniture”, economies of scale once there is a mass market for small reactors, and mass-produced reactors leading to “a big transition to clean energy globally”. But first you would need to invest billions to set up the infrastructure to mass produce reactors ‒ and no-one has any intention of making that investment. And there’s no mass market for small reactors ‒ there is scarcely any market at all.17

TerraPower   TerraPower is one step ahead of Transatomic and Oklo ‒ it has some serious funding. But it’s still a long way off ‒ Nick Touran from TerraPower says in the film that tests will “take years” and the company is investing in a project with “really long horizons … [it] may take a very long time”.

TerraPower’s sodium-cooled fast neutron reactor remains a paper reactor. Shellenberger writes:12

“In 2008, The New Yorker profiled Nathan Myhrvold, a former Microsoft executive, on his plans to re-invent nuclear power with Bill Gates. Nuclear scientist Edward “Teller had this idea way back when that you could make a very safe, passive nuclear reactor,” Myhrvold explained. “No moving parts. Proliferation-resistant. Dead simple.”

“Gates and Myhrvold started a company, Terrapower, that will break ground next year in China on a test reactor. “TerraPower’s engineers,” wrote a reporter recently, will “find out if their design really works.”

“And yet the history of nuclear power suggests we should have more modest expectations. While a nuclear reactor “experiment often produced valuable clues,” Hewlett and Holl wrote, “it almost never revealed a clear pathway to success.” …

“For example, in 1951, a reactor in Idaho used sodium rather than water to cool the uranium ‒ like Terrapower’s design proposes to do. “The facility verified scientific principles,” Hewlett and Holl noted, but “did not address the host of extraordinary difficult engineering problems.” …

“Why do so many entrepreneurs, journalists, and policy analysts get the basic economics of nuclear power so terribly wrong? In part, everybody’s confusing nuclear reactor designs with real world nuclear plants. Consider how frequently advocates of novel nuclear designs use the future or even present tense to describe qualities and behaviors of reactors when they should be using future conditional tense.

“Terrapower’s reactor, an IEEE Spectrum reporter noted “will be able to use depleted uranium … the heat will be absorbed by a looping stream of liquid sodium … Terrapower’s reactor stays cool”.

 “Given that such “reactors” do not actually exist as real world machines, and only exist as computer-aided designs, it is misleading to claim that Terrapower’s reactor “will” be able to do anything. The appropriate verbs for\ that sentence are “might,” “may,” and “could.” …

“Myhrvold expressed great confidence that he had proven that Terrapower’s nuclear plant could run on nuclear waste at a low cost. How could he be so sure? He had modeled it. “Lowell and I had a month-long, no-holdsbarred nuclear-physics battle. He didn’t believe waste would work. It turns out it does.” Myhrvold grinned. “He concedes it now.”

 “Rickover was unsparing in his judgement of this kind of thinking. “I believe this confusion stems from a failure to distinguish between the academic and the practical,” he wrote. “The academic-reactor designer is a dilettante. He has not had to assume any real responsibility in connection with his projects. He is free to luxuriate in elegant ideas, the practical shortcomings of which can be relegated to the category of ‘mere technical details.””

October 1, 2018 Posted by | 2 WORLD, Reference, spinbuster, technology | 5 Comments

Small Modular Nuclear Reactors – their developers demand $billions from UK tax-payers

Energy firms demand billions from UK taxpayer for mini reactors Ministers under pressure to fund new generation of small-scale nuclear power stations,Guardian, Adam Vaughan Energy correspondent @adamvaughan_uk, 1 Oct 2018 Backers of mini nuclear power stations have asked for billions of pounds of taxpayers’ money to build their first UK projects, according to an official document.

Advocates for small modular reactors (SMRs) argue they are more affordable and less risky than conventional large-scale nuclear plants, and therefore able to compete with the falling costs of windfarms and solar power.

But the nuclear industry’s claims that the mini plants would be a cheap option for producing low-carbon power appear to be undermined by the significant sums it has been asking of ministers.

Some firms have been calling for as much as £3.6bn to fund construction costs, according to a government-commissioned report, released under freedom of information rules. Companies also wanted up to £480m of public money to help steer their reactor designs through the regulatory approval process, which is a cost usually paid by nuclear companies.

Ten companies hoping to build the plants requested direct government funding, according to the briefing paper by the Expert Finance Working Group on Small Reactors. While the report named the companies involved in the mini nuclear projects, it did not specify who was asking for

David Lowry, a nuclear policy consultant who obtained the document, said: “SMRs are either old, discredited designs repackaged when companies see governments prepared to throw taxpayers’ subsidies to support them, or are exotic new technologies, with decades of research needed before they reach commercial maturity.”

The working group that drafted the report, and was appointed by the Department for Business, Energy and Industrial Strategy (BEIS), urged the government in August to put in place a framework to help bring the smaller plants to market.

The government has already offered £44m of funding for research and development of one group of SMRs, which typically have a capacity of less than a tenth of the Hinkley Point C nuclear plant being built in Somerset, or enough power for 600,000 homes.

Mini nuclear power stations are unlikely to supply clean energy to Britain’s homes and businesses any time soon. Of more than 30 British, US and Chinese companies that have expressed an interest in building one in the UK, the majority told the working group that their power stations would be ready to deployed in the 2030s.

The companies include UK firms such as Rolls-Royce, Sheffield Forgemasters and Atkins, along with China’s CNNC, US companies NuScale and Westinghouse, and France’s EDF Energy.

The working group found the firms’ cost estimates “varied significantly”, to the degree that some of the companies clearly had a “lack of understanding” of how British nuclear regulation works.

It also noted that some of the companies proposed using “non-standard fuels” rather than the conventional uranium used by today’s nuclear plants, which “may add cost to business models” because of new facilities to produce and later manage the spent fuel.

The firms told the group that the four main barriers they faced were finding and confirming sites, the cost of regulatory approval for their designs, a lack of state funding and unclear policy.

The government is expected to make announcements soon regarding the siting regime and regulatory approvals for SMRs, sources told the Guardian……..

October 1, 2018 Posted by | business and costs, politics, Small Modular Nuclear Reactors, UK | Leave a comment

Court action over planned shutdown of Savannah River Site’s MOX project.

WJBF 26th Sept 2018 , A Federal Appeals Court is set to discuss, Thursday, the future of Savannah
River Site’s MOX project. In a letter sent to a Texas congressman and
filed in court documents, the National Nuclear Security Agency says it
agrees with the decision made by Energy Secretary Rick Perry to stop the
The State of South Carolina is suing the DOE saying its opinion on
the matter was never considered when Secretary Perry issued the directive
to end MOX earlier this year.
Meanwhile, President Trump signed a new bill
last week that would effectively cut MOX down from over $300-billion to
$220 billon…which is the exact amount of funds it would take to close the
incomplete project safely and in a timely manner.

September 29, 2018 Posted by | Legal, reprocessing, USA | Leave a comment

Debunking the claims about generation IV nuclear waste

Generation IV nuclear waste claims debunked, Nuclear Monitor 24 Sept 18   Lindsay Krall and Allison Macfarlane have written an important article in the Bulletin of the Atomic Scientists debunking claims that certain Generation IV reactor concepts promise major advantages with respect to nuclear waste management. Krall is a post-doctoral fellow at the George Washington University. Macfarlane is a professor at the same university, a former chair of the US Nuclear Regulatory Commission from July 2012 to December 2014, and a member of the Blue Ribbon Commission on America’s Nuclear Future from 2010 to 2012.

Krall and Macfarlane focus on molten salt reactors and sodium-cooled fast reactors, and draw on the experiences of the US Experimental Breeder Reactor II and the US Molten Salt Reactor Experiment.

The article abstract notes that Generation IV developers and advocates “are receiving substantial funding on the pretense that extraordinary waste management benefits can be reaped through adoption of these technologies” yet “molten salt reactors and sodium-cooled fast reactors – due to the unusual chemical compositions of their fuels – will actually exacerbate spent fuel storage and disposal issues.”

Here is the concluding section of the article: Continue reading

September 28, 2018 Posted by | 2 WORLD, Reference, technology | Leave a comment

Following Transatomic’s failure, small modular nuclear reactors face uncertain future

Is it worth spending $millions on a nuclear technology whose only real purpose is to train nuclear technologists?

A good announcement and a bad announcement for two nuclear-energy startups,NuScale Power takes a step toward engineering; Transatomic power shuts down. Ars Technica, MEGAN GEUSS – 9/26/2018  “…………….The old light-water reactors that serve America’s grid today create nuclear waste that’s politically impossible to dispose of. Nuclear plants with traditional reactors are also extremely expensive to build and difficult to permit.

For these reasons, many nuclear hopefuls have looked to advanced nuclear technology. Several startups have popped up, promising to make either the waste problem or the expense problem go away.

This week, two advanced nuclear-technology startups have announced major news, both good and bad for the future of advanced nuclear technology………..

 Transatomic is going to close down, according to MIT Technology Review. Several years ago, the startup raised millions on promises to use spent nuclear waste as reactor fuel, as well as to “generate electricity 75 times more efficiently than conventional light-water reactors,” according to MIT Technology Review. The company later retracted that “75 times” claim after a review from MIT’s Nuclear Engineering Department found issue with it.

Instead, Transatomic revised its estimates in 2016 to say that its reactor would be able to generate more than two times as much energy per ton of mined uranium than a standard reactor.

The company’s design to use spent nuclear-reactor fuel in a molten salt reactor was also called into question, causing Transatomic to state in its 2016 revision that its design “does not reduce existing stockpiles of spent nuclear fuel.”

The lost confidence made it harder for Transatomic to find funding to complete the $15 million it needed to build a prototype reactor, although it had raised about $4 million already……..

Onward to manufacturing

NuScale Power, based out of Portland, Oregon issued a press release today saying that, after 18 months of searching, it has selected manufacturing company BWX Technologies to begin engineering work that will lead to manufacturing the company’s Small Modular Reactor (SMR) design.

Phase 1 engineering and manufacturing begins today and will last until 2020, NuScale wrote, and then Phases 2 and 3—”preparing for fabrication” and “fabrication,” respectively—will continue from there……..

Small Modular Reactors don’t solve the nuclear-waste problem mentioned at the top of this article, but in theory, they might solve nuclear energy’s expense problem. Building smaller reactors that can be modularly expanded if necessary could not only keep siting, construction, and regulatory costs proportionally lower, but using the same manufacturing and construction crews to build more, smaller reactors would theoretically develop a workforce with expertise in building and installing reactors.

September 28, 2018 Posted by | Small Modular Nuclear Reactors, USA | Leave a comment