nuclear-news

The News That Matters about the Nuclear Industry Fukushima Chernobyl Mayak Three Mile Island Atomic Testing Radiation Isotope

Russia and the quest for nuclear power in space

Below are extracts from this very thoroughly researched article. The original contains much historical detail, good diagrams and excellent references

Ekipazh: Russia’s top-secret nuclear-powered satellite, The Space Review, by Bart Hendrickx, Monday, October 7, 2019  There is strong evidence from publicly available sources that a Russian company called KB Arsenal is working on a new type of military satellite equipped with a nuclear power source. Called Ekipazh, its mission may well be to perform electronic warfare from space.

KB Arsenal, based in St. Petersburg, is no newcomer to the development of nuclear-powered satellites. In the Soviet days it built satellites known as US-A (standing for “active controllable satellite”), which carried nuclear reactors to power radars used for ocean reconnaissance (in the West they were known as “radar ocean reconnaissance satellites” or RORSAT for short.)  ……………
 evidence emerged in the past few years for the existence of another KB Arsenal project with the odd name Ekipazh (a French loanword meaning both “crew” and “horse-drawn carriage”). The name first surfaced in the 2015 annual report of a company called NPP KP Kvant, which manufactures optical sensors for satellite orientation systems. It revealed that the company had signed a contract with KB Arsenal under project Ekipazh to deliver an Earth sensor (designated 108M) for “transport and energy modules.” According to the 2015 report, test flights of Ekipazh were to be completed in 2021.
Documentation published in recent weeks and months on Russia’s publicly accessible government procurement website zakupki.gov.ru has now confirmed that Ekipazh and TEM are indeed separate efforts. While TEM is a civilian project started jointly by Roscosmos and Rosatom in 2010, Ekipazh officially got underway on August 13, 2014, with a contract signed between KB Arsenal and the Ministry of Defense. It has the military index 14F350, an out-of-sequence number in the 14F satellite designation system, pointing to the satellite’s unusual nature………
While this procurement documentation reveals little about the true nature of Ekipazh and its “transport and energy module,” contractual information that appeared on the procurement website this summer provides conclusive evidence that Ekipazh is a nuclear-powered satellite and leaves little doubt that it uses the Plazma-2010 platform or an outgrowth of it…………

Regulatory issues

Despite the safety risks associated with launching nuclear reactors into space, there are no international rules forbidding nations from doing so. In September 1992, the General Assembly of the United Nations did adopt the so-called “Principles Relevant to the Use of Nuclear Power Sources in Outer Space,” but these do not have the same binding force as the UN Outer Space Treaties.

One of the Principles stipulates that nuclear reactors may be operated on interplanetary missions, orbits high enough to allow for a sufficient decay of the fission products, or in low-Earth orbits if they are boosted to sufficiently high orbits after the operational part of the mission. As explained earlier, the latter procedure was followed for the Soviet-era RORSAT missions, but it is highly unlikely that Russia would want to risk repeating the Cosmos 954 experience of 1978. In fact, the very presence of a “transport and energy module” on Ekipazh is a sure sign that it will be placed into an orbit high enough to prevent any harm. Before the nuclear-powered TEM is even activated, a liquid-fuel propulsion system may first boost the satellite to an orbital altitude of at least 800 kilometers, the same procedure that has been described for the one-megawatt TEM. During a recent question-and-answer question with students in St. Petersburg, Roscosmos chief Dmitri Rogozin confirmed that 800 kilometers is the minimum operating altitude for nuclear reactors. Judging from Russian press reports, Rogozin was actually replying to a question about Ekipazh, but seemingly dodged that by talking about the one-megawatt reactor instead.[38]

Another Principle states that launching nations should make a thorough and comprehensive safety assessment and share the results of that with other nations before launch:

The results of this safety assessment, together with, to the extent feasible, an indication of the approximate intended time-frame of the launch, shall be made publicly available prior to each launch and the Secretary-General of the United Nations shall be informed on how States may obtain such results of the safety assessment as soon as possible prior to each launch.

Russia adhered to this rule on the only occasion that it launched nuclear material into space after the adoption of the 1992 Principles. This was on the ill-fated Mars-96 interplanetary mission, which carried two surface penetrators powered by small radioisotope thermoelectric generators (RTGs). However, unlike Ekipazh, Mars-96 was an international scientific mission and the presence of the RTGs was widely known. It will be interesting to see how Russia deals with this issue once the top-secret Ekipazh nears launch.

Outlook

It may well be several more years before that launch takes place. Although the initial goal appears to have been to finish test flights by 2021, the available procurement documentation suggests that the first mission is still some time off. Ekipazh may well be experiencing the same kind of delays suffered by many other Russian space projects due to both budgetary issues and Western-imposed sanctions that have complicated the supply of electronic components for space hardware. On top of that, the development of a nuclear-powered satellite is bound to pose some daunting technical challenges that may further contribute to the delays.

One also wonders if the Russians are biting off more than they can chew by simultaneously working on two nuclear electric space tugs (Ekipazh and the one-megawatt TEM). An attempt to streamline this effort seems to have been made by giving KB Arsenal a leading role in both projects in 2014, making it possible to benefit from the company’s earlier experience in the field and infrastructure that it may already have in place to test related hardware. Still, the two projects use fundamentally different nuclear reactors built by different organizations.

The slow progress made in developing the one-megawatt gas-turbine reactor has left many wondering if it will ever fly in space. If Russia plans to use nuclear reactors solely for practical applications in Earth orbit, it may make more sense to abandon the gas-turbine reactor altogether and upgrade the capacity of Krasnaya Zvezda’s thermionic reactors. The company has already done conceptual work on thermionic reactors with a maximum capacity of several hundred kilowatts, even though their operational lifetime would be limited.[39] If this path is chosen, Ekipazh could serve as a testbed for all the nuclear reactors that Russia intends to fly in the near future. However, the country is unlikely to let all the money and effort invested in the one-megawatt TEM go to waste, even if its capabilities may not be needed until well into the 2030s or even later.
Project Ekipazh is discussed in this thread on the NASA Spaceflight Forum, which is updated with new information as it becomes available……. http://www.thespacereview.com/article/3809/1
Advertisements

October 14, 2019 Posted by | Reference, Russia, space travel | Leave a comment

Physics Nobel Laureate predicts NO Migration to Other Planets

Humans will not ‘migrate’ to other planets, Nobel winner says,  https://phys.org/news/2019-10-humans-migrate-planets-nobel-winner.html?fbclid=IwAR2JOS8NV_Z1FWLWspae0m611nKzYdZaHB7DQGvVEYIpDnYqYKgsDnPQCDc  10 Oct 19   Humans will never migrate to a planet outside of Earth’s solar system because it would take far too long to get there, Swiss Nobel laureate Michel Mayor said Wednesday.

Mayor and his colleague Didier Queloz were on Tuesday awarded the Nobel Prize for Physics for their research refining techniques to detect so-called exoplanets.

“If we are talking about exoplanets, things should be clear: we will not migrate there,” Mayor told AFP near Madrid on the sidelines of a conference when asked about the possibility of humans moving to other planets.

“These planets are much, much too far away. Even in the very optimistic case of a livable planet that is not too far, say a few dozen light years, which is not a lot, it’s in the neighbourhood, the time to go there is considerable,” he added.

“We are talking about hundreds of millions of days using the means we have available today. We must take care of our planet, it is very beautiful and still absolutely liveable.”

The 77-year-old said he felt the need to “kill all the statements that say ‘OK, we will go to a liveable planet if one day life is not possible on earth’.”

“It’s completely crazy,” he added.

Using custom-made instruments at their observatory in southern France, Mayor and Queloz in October 1995 discovered what had previously only existed in the realm of science fiction—a planet outside Earth’s solar system.

Mayor was a professor at Geneva University and Queloz was his doctorate student, when they made the discovery which started a revolution in astronomy. Since then over 4,000 exoplanets have been found in our home galaxy.

“It was a very old question which was debated by philosophers: are there other worlds in the Universe?,” Mayor said.

“We look for planets which are the closest (to us), which could resemble Earth. Together with my colleague we started this search for planets, we showed it was possible to study them.”

Mayor said it was up to the “next generation” to answer the question of whether there is life on other planets.

“We don’t know! The only way to do it is to develop techniques that would allow us to detect life at a distance,” he said.

October 12, 2019 Posted by | 2 WORLD, space travel | Leave a comment

Weapons proliferation risk of nuclear power in space

Push for nuclear power in space sets off proliferation debate, Politico, By JACQUELINE FELDSCHER , 09/27/2019    NASA could place human missions to the moon or Mars in political jeopardy if it opts to use highly-enriched uranium as a power source in space, warns a leading specialist on nuclear proliferation.Astronauts living off of Earth for months at a time will need a reliable energy source for life support and to conduct experiments. But nuclear reactors using highly-enriched uranium, which is used in atomic bombs, will present a host of safety risks and diplomatic obstacles, says Alan Kuperman, the founding coordinator of the Nuclear Proliferation Prevention Project at the University of Texas at Austin.Kuperman is convening stakeholders on the issue next month, including Jeffrey Sheehy, the chief engineer in NASA’s Space Technology Mission Directorate, and Rep. Bill Foster (D-Ill.), who serves on the committee that oversees NASA. The House-passed fiscal 2020 appropriations bill for NASA includes an amendment from Foster that directs NASA to focus its research on low-enriched uranium reactors.

“There’s a lot of opposition in Congress and in nonprofit groups to any further use of highly-enriched uranium,” Kuperman tells us. “So if NASA wants to use highly-enriched uranium for this space reactor, it might provoke opposition to space reactors in general.

“NASA is introducing political risks to its plan by going this highly-enriched uranium route,” he adds.

The Trump administration ordered NASA in August to craft guidelines for safely using nuclear reactors on Mars or the moon. NASA is also moving ahead with its nuclear power ambitions under it’s Kilopower project to build a highly-enriched uranium reactor that could deliver 10 kilowatts of electrical power continuously for at least 10 years. The space agency launched a study in fiscal 2019 with the Department of Energy to determine how both low and highly-enriched uranium could meet different needs. But the agency “has not made a final decision on highly-enriched uranium versus low-enriched uranium for surface power,” according to NASA spokeswoman Clare Skelly………  https://www.politico.com/story/2019/09/27/nuclear-power-nasa-mars-alan-kuperman-q-and-a-1510896

September 28, 2019 Posted by | 2 WORLD, space travel, weapons and war | Leave a comment

The ‘advanced’ nuclear power sector is dystopian  

https://theecologist.org/2019/sep/10/advanced-nuclear-power-sector-dystopian, Jim Green – Nuclear Monitor 10th September 2019  The ‘advanced’ nuclear power sector is dystopian because of its connections to fossil fuel mining and nuclear weapons proliferation.

A documentary called New Fire was released promoting ‘advanced’ nuclear power concepts last year. The heroes of the film were young entrepreneurs Leslie Dewan and Mark Massie, founders of a start-up called Transatomic Power that was developing a ‘Waste-Annihilating Molten-Salt Reactor’.

Problems arose during the long gestation of New Fire. Transatomic Power gave up on its plan to use nuclear waste as reactor fuel after its theoretical calculations were proven to be false, and the waste-annihilating reactor was reinvented as a waste-producing, uranium-fuelled reactor.

Worse was to come: just before the release of New Fire, Transatomic Power went broke and collapsed altogether. An epic fail.

Reactor

The Australian parliament’s ‘inquiry into the prerequisites for nuclear energy‘ is shaping up to be another epic fail. The conservative chair of the inquiry claims that “new technologies in the field are leading to cleaner, safer and more efficient energy production.”

But the ‘advanced’ nuclear power sector isn’t advanced and it isn’t advancing.

The next ‘advanced’ reactor to commence operation will be Russia’s floating nuclear power plant, designed to help exploit fossil fuel reserves in the Arctic ‒ fossil fuel reserves that are more accessible because of climate change. That isn’t ‘advanced’ ‒ it is dystopian.

Russia’s enthusiastic pursuit of nuclear-powered icebreaker ships (nine such ships are planned by 2035) is closely connected to its agenda of establishing military and economic control of the Northern Sea Route ‒ a route that owes its existence to climate change.

China General Nuclear Power Group (CGN) says the purpose of its partly-built ACPR50S demonstration reactor is to develop floating nuclear power plants for oilfield exploitation in the Bohai Sea and deep-water oil and gas development in the South China Sea.

God-awful

‘Advanced’ nuclear reactors are advancing climate change. Another example comes from Canada, where one potential application of small reactors is providing power and heat for the extraction of hydrocarbons from tar sands.

Some ‘advanced’ reactors could theoretically consume more nuclear waste than they produce. That sounds great ‒ until you dig into the detail.

An article in the Bulletin of the Atomic Scientists ‒ co-authored by Allison Macfarlane, a former chair of the US Nuclear Regulatory Commission ‒ states that “molten salt reactors and sodium-cooled fast reactors – due to the unusual chemical compositions of their fuels – will actually exacerbate spent fuel storage and disposal issues.”

The subclass of sodium-cooled fast reactors called ‘integral fast reactors’ (IFRs) could theoretically gobble up nuclear waste and convert it into low-carbon electricity, using a process called pyroprocessing.

But an IFR R&D program in Idaho has left a god-awful mess that the Department of Energy (DOE) is struggling to deal with. This saga is detailed in a 2017 article and a longer report by the Union of Concerned Scientists’ senior scientist Dr. Edwin Lyman, drawing on documents obtained under Freedom of Information legislation.

Breeder

Dr. Lyman writes: “Pyroprocessing has taken one potentially difficult form of nuclear waste and converted it into multiple challenging forms of nuclear waste. DOE has spent hundreds of millions of dollars only to magnify, rather than simplify, the waste problem. …

The FOIA documents we obtained have revealed yet another DOE tale of vast sums of public money being wasted on an unproven technology that has fallen far short of the unrealistic projections that DOE used to sell the project”.

Some ‘advanced’ reactors could theoretically consume more fissile (explosive) nuclear material than they produce. Instead of contributing to weapons proliferation risks and problems, they could contribute to the resolution of those problems.

That sounds great ‒ until you dig into the detail. After Russia’s floating nuclear plant, the next ‘advanced’ reactor to commence operation may be the Prototype Fast Breeder Reactor (PFBR) in India.

Weapons

The PFBR has a blanket with thorium and uranium to breed fissile uranium-233 and plutonium respectively ‒ in other words, it will be ideal for weapons production.

India plans to use fast breeder reactors (a.k.a. fast neutron reactors) to produce weapon-grade plutonium for use as the initial ‘driver’ fuel in thorium reactors.

As John Carlson, the former Director-General of the Australian Safeguards and Non-proliferation Office, has repeatedly noted, those plans are highly problematic with respect to weapons proliferation and security.

There’s nothing “cleaner, safer and more efficient” about India’s ‘advanced’ reactor program. On the contrary, it is dangerous and it fans regional tensions and proliferation concerns in South Asia ‒ all the more so since India refuses to allow International Atomic Energy Agency safeguards inspections of its ‘advanced’ nuclear power program.

And if those regional tensions boil over into nuclear warfare, catastrophic climate change will likely result. Fossil fuels provide the surest route to catastrophic climate change; nuclear warfare provides the quickest route.

Reactors

The ‘advanced’ nuclear power sector isn’t advanced ‒ it is dystopian. And it isn’t advancing ‒ it is regressing.

The Russian government recently clawed back US$4 billion from Rosatom’s budget by postponing its fast neutron reactor program; specifically, by putting on hold plans for what would have been the only gigawatt-scale fast neutron reactor anywhere in the world.

France recently abandoned plans for a demonstration fast reactor. Pursuit of fast reactor technology is no longer a priority in France according to the World Nuclear Association.

And funding is tight because of yet another failing project: a 100-megawatt materials testing reactor that is 500 percent over-budget (and counting) and eight years behind schedule (and counting).

Other fast reactor projects have collapsed in recent years. TerraPower abandoned its plan for a prototype fast reactor in China last year due to restrictions placed on nuclear trade with China by the Trump administration, and requests for US government funding have reportedly received a negative reception.

The US and UK governments have both considered using GE Hitachi’s ‘PRISM’ fast reactor technology to process surplus plutonium stocks ‒ but both governments have rejected the proposal.

Failed

Fast reactors and other ‘advanced’ concepts are sometimes called Generation IV concepts.

But fast reactors have been around since the dawn of the nuclear age. They are best described as failed Generation I technology ‒ “demonstrably failed technology” in the words of Allison Macfarlane.

The number of operating fast reactors reached double figures in the 1980s but has steadily fallen and will remain in single figures for the foreseeable future.

Currently, just five fast reactors are operating ‒ all of them described by the World Nuclear Association as experimental or demonstration reactors.

Modular

As discussed previously in The Ecologist, most of the handful of small modular reactors (SMRs) under construction are over-budget and behind schedule; there are disturbing connections between SMRs, weapons proliferation and militarism more generally; and about half of the SMRs under construction are intended to be used to facilitate the exploitation of fossil fuel reserves.

SMRs aren’t leading to “cleaner, safer and more efficient energy production”. And SMRs aren’t advancing ‒ projects are falling over left, right and centre:

  • Babcock & Wilcox abandoned its mPower SMR project in the US despite receiving government funding of US$111 million.
  • Westinghouse sharply reduced its investment in SMRs after failing to secure US government funding.
  • China is building a demonstration high-temperature gas-cooled reactor (HTGR) but it is behind schedule and over-budget and plans for additional HTGRs at the same site have been “dropped” according to the World Nuclear Association.
  • MidAmerican Energy gave up on its plans for SMRs in Iowa after failing to secure legislation that would force rate-payers to part-pay construction costs.
  • Rolls-Royce sharply reduced its SMR investment in the UK to “a handful of salaries” and is threatening to abandon its R&D altogether unless massive subsidies are provided by the British government.

 

Zombie reactors

Fast reactors are demonstrably failed technology. SMRs have failed previously and are in the process of failing yet again. What else is there in the ‘advanced’ nuclear sector?

Fusion? At best, it is decades away and most likely it will forever remain decades away. Two articles in the Bulletin of the Atomic Scientists by Dr. Daniel Jassby ‒ a fusion scientist ‒ comprehensively debunk all of the rhetoric spouted by fusion enthusiasts.

Thorium? There are no fundamental differences between thorium and uranium, so building a thorium fuel cycle from scratch to replace the uranium fuel cycle would be absurd ‒ and it won’t happen.

High-temperature gas-cooled reactors (HTGRs) including the pebble-bed modular reactor sub-type? This zombie concept refuses to die even as  one after another country embarks on R&D, fails, and gives up. As mentioned, China is building a prototype but has dropped plans for further HTGRs.

Paper reactors

Claims that new nuclear technologies are leading to “cleaner, safer and more efficient energy production” could only be justified with reference to concepts that exist only as designs on paper.

As a nuclear industry insider quipped: “We know that the paper-moderated, ink-cooled reactor is the safest of all. All kinds of unexpected problems may occur after a project has been launched.”

There’s nothing that can be said about ‘advanced’ reactor rhetoric that wasn’t said by Admiral Hyman Rickover ‒ a pioneer of the US nuclear program ‒ all the way back in 1953.

“An academic reactor or reactor plant almost always has the following basic characteristics: (1) It is simple. (2) It is small. (3) It is cheap (4) It is light. (5) It can be built very quickly. (6) It is very flexible in purpose (‘omnibus reactor’). (7) Very little development is required. It will use mostly off-the-shelf components. (8) The reactor is in the study phase. It is not being built now.

“On the other hand, a practical reactor plant can be distinguished by the following characteristics: (1) It is being built now. (2) It is behind schedule. (3) It is requiring an immense amount of development on apparently trivial items. Corrosion, in particular, is a problem. (4) It is very expensive. (5) It takes a long time to build because of the engineering development problems. (6) It is large. (7) It is heavy. (8) It is complicated.”

This Author

Dr. Jim Green is the national nuclear campaigner with Friends of the Earth Australia and editor of the Nuclear Monitor newsletter.

September 20, 2019 Posted by | 2 WORLD, Reference, technology | Leave a comment

NuScale’s nuclear reactor looks suspiciously like an old design, (that melted down)

Why Does NuScale SMR Look Like a 1964 Drawing of Swiss Lucens Nuclear Reactor (which suffered a major meltdown in 1969)?
https://miningawareness.wordpress.com/2015/08/31/why-does-nuscale-smr-look-like-a-1964-drawing-of-swiss-lucens-nuclear-reactor-which-suffered-a-major-meltdown-in-1969/
Whatever NuScale is, or is not, it clearly isn’t “new”. The Bible must have foreseen the nuclear industry when it said that there was no new thing under the sun. While there might be something new about it, certainly its scale is not. And, it seems mostly a remake of old military reactors, perhaps with influence from swimming pool reactors.

The main ancestor seems to be the US Army’s SM-1, made by the American Locomotive Company, making its most distant ancestor the steam locomotive.

Government subsidizes for NuScale are a deadly taxpayer rip rip-off. Even without an accident, nuclear reactors legally leak deadly radionuclides into the environment during the entire nuclear fuel chain, as well as when they are operating. Then, the nuclear waste is also allowed to leak for perpetuity.

The 1964 Lucens Design certainly looks like the one unit NuScale. Did MSLWR, now NuScale, take from Lucens or from an earlier common design ancestor?

NuScale 12 years ago when it was called MASLWR and still an official government project, 2003, INEEL/EXT-04-01626.

This is for single reactors. They want to clump them together.

Is there a common ancestor in either the US nuclear power station in Greenland or Antarctica? Actually, the main “parent” for the underground concept, according to the Swiss documentation, is underground hydroelectric power stations, dating from the 1800s. These caverns have been known to collapse, which, along with the WIPP collapse, points to another risk associated with underground nuclear reactors, besides leakage and corrosion.
being mostly in an underground cavern proved to be a liability rather than an asset for Lucens. The cavern leaked water and contributed to corrosion issues that ultimately led to nuclear meltdown.

Despite its tiny size, tinier than NuScale, it still is classified as a major nuclear accident. Furthermore, the cavern did not keep the nuclear fallout from escaping into the environment. There was 1 Sv (1000 mSv) per hour of
radiation in the cavern. Radiation was measured in the nearby village, and the cavern still leaks radiation. Continue reading

September 19, 2019 Posted by | Reference, Small Modular Nuclear Reactors, USA | Leave a comment

Security dangers of nuclear energy in space

Nuclear Energy in Space: Nonproliferation Risks  http://www.spaceref.com/news/viewpr.html?pid=54634, University of Texas-Austin, September 17, 2019

On October 17, experts from NASA, Congress, and reactor companies will gather in the nation’s capital to discuss ongoing development of nuclear reactors for space missions and the potential security risks.

The event is free, but pre-registration is required.  For further details, and to register, please see: https://space-nuclear.eventbrite.com.

The program will feature Jeffrey A. Sheehy, NASA’s Chief Engineer in the Space Technology Mission Directorate.   The keynote address will be delivered by Rep. Bill Foster (D-IL), the only physicist in Congress and a member of the House Science Committee.

Controversy centers on NASA’s choice of fuel for the reactor it tested in 2018 for use on a planetary surface: weapons-grade, highly enriched uranium.  NASA scientists believe such uranium would enable smaller reactors, reducing launch costs.  However, critics argue it could undermine decades of U.S. progress in reducing worldwide civilian commerce in this dangerous material, create a precedent that could help rogue countries obtain nuclear weapons, sharply increase security costs, impede NASA’s cost-saving collaboration with commercial partners who lack licenses for such uranium, and potentially disperse nuclear weapons material to adversaries in the event of a launch failure.  They say that an alternative reactor fuel – low-enriched uranium, which is unsuitable for nuclear weapons – could reduce the security, economic, and political risks.

Last month, President Trump issued a Presidential Memorandum on the launch of space nuclear systems, which highlighted the security risk: “Due to potential national security considerations associated with nuclear nonproliferation . . . The President’s authorization shall be required for Federal Government launches . . . when such systems utilize any nuclear fuel other than low-enriched uranium.”  In June 2019, the U.S. House of Representatives passed an appropriations bill that included an amendment by Rep. Foster, directing NASA to “work towards the development of a low enriched uranium (LEU) space power reactor.”

September 19, 2019 Posted by | safety, space travel, USA, weapons and war | Leave a comment

Ontario’s secretive role in helping Trump to nuclear weaponise Space

The space race has a dirty nuclear secret and it’s right here in Ontario, https://nowtoronto.com/news/space-race-nuclear-power-ontario/  by Rosemary Frei, SEPTEMBER 16, 2019   

Unbeknownst to most Canadians, the Darlington nuclear power plant 70 kilometres east of Toronto has been playing a not-so-small role in the U.S. race to weaponize space

The 50th anniversary of the Apollo 11 mission added momentum to the new push to go farther into outer space than humans have ever gone before.

Ontario’s nuclear industry could receive both a reflected glow from the extraterrestrial travel hype and a new revenue stream. It could also potentially increase international nuclear-weapons proliferation.

Unbeknownst to most Canadians, the Darlington nuclear power plant 70 kilometres east of Toronto has already been playing a not-so-small role in the space race.

The plant has been producing radioactive plutonium-238 as fuel for spacecraft in NASA’s mushrooming space pipeline since 2017.

That’s when Ontario Power Generation (OPG) announced excitedly that it would start making plutonium-238 for space exploration. The plant produces about 10 kilograms of plutonium-238 a year.

“We are proud to have Ontario play a part, however small, in this most noble of human endeavours,” OPG’s then-president and CEO Jeff Lyash said in a news release.

Canadian Nuclear Laboratories (CNL), which runs the Chalk River facility near Ottawa, another participant in the initiative, posted a “Success Stories” article on its website seven days later. It cautioned that “this opportunity is still subject to regulatory and licensing processes.” But it quotes a CNL official as saying “staff should take a lot of pride in the fact that we are key partners.”

CNL has continued communicating with other project stakeholders. But when NOW contacted CNL for a comment it responded on September 5 that it is no longer involved in the project. OPG has removed the news release from its website and did not respond to NOW’s request for information. Turns out a company called Technical Solutions Management (TSM) is steering the initiative now.

TSM is owned by former nuclear-industry executives Billy Shipp, Pierre Tremblay and Paul Spekkens. CEO Shipp told NOW in an August 29 phone interview that NASA has yet to give its formal thumbs-up.

“For us to get out ahead of our client [NASA], in terms of anticipated need [for plutonium-238], or making statements of their need, is not that professional on our part. So we really have been very low-key on this,” Shipp says when reached for an interview aboard a boat off Vancouver Island.

But he noted that U.S. President Donald Trump’s establishment of a Space Command makes the project more likely to proceed.

Plutonium-238 has long been used to fuel flight, via conversion into electricity of the intense heat the atom pumps out. The U.S. powered military satellites with it in the 1960s. NASA also harnessed it most recently to propel Curiosity Rover to Mars in 2011.

The steps involved for the manufacture of made-in-Canada plutonium-238 to supplement the U.S.’s production involves first synthesizing neptunium-237, plutonium-238’s precursor at the Pacific Northwest National Laboratory in Richland, Washington.

From there, the material is transported to Chalk River where it is put into bundles before it’s sent to Darlington and inserted into CANDU reactors. There, the neptunium-237 catches stray neutrons, transforming it into plutonium-238. The bundles are shipped back to Chalk River where the plutonium-238 is separated from by-products and packaged into pellets. The pellets are transported to Idaho National Lab where they are readied as ‘nuclear batteries’ for spacecraft engines. The current price of plutonium-238 isn’t public, but back in 2003 one kilogram was worth about $8 million U.S.

Gordon Edwards, co-founder and president of the Canadian Coalition for Nuclear Responsibility, says the form of radioactivity emitted by plutonium (namely, alpha particles) is highly toxic when inhaled but often isn’t picked up by radiation detectors.

For example, in November 2009, hundreds of workers at OPG’s Bruce nuclear plant breathed in plutonium dust (a by-product of nuclear-energy production) but the plutonium remained undetected for weeks. Many of the workers had not been given respirators. It was the largest preventable exposure of workers to internal radioactive contamination in the history of the civilian nuclear industry.

Even worse, says Edwards, is the fact the process used to create plutonium-238 can also be used to transform depleted uranium into plutonium-239, the key explosive in nuclear bombs.

“I grant that TSM’s plutonium-238 program does not fundamentally enhance this danger, but it does provide an opportunity to tell the public and politicians that if you can produce one kind of plutonium for the space program you can just as easily produce another kind of plutonium for a nuclear-weapons program, using essentially the same CANDU technology,” Edwards tells NOW.

However, no one inside the space or nuclear industries appears be seriously addressing these well-known problems. And there is plenty of money potentially available for a new plutonium-238 venture. NASA projects its research and development budget – including developing power and propulsion systems – will be $1.5 billion next year, rising to $3.4 billion by 2024.

TSM’s other co-owners, Tremblay and Spekkens, are well-placed to move such a project forward. Tremblay was OPG’s chief nuclear operating officer and president of OPG’s subsidiary Canadian Nuclear Partners. He became AECOM Canada Nuclear Operations’ president and CEO in August 2018. The American multinational is playing key roles in the multi-billion-dollar Darlington refurbishment. Tremblay started consulting for AECOM in June 2016; an industry article about this said the firm “has recruited key expertise that will undoubtedly position the company to play a key part in the massive nuclear power projects anticipated for Ontario over the next decade.”

Spekkens retired in 2016 as OPG’s vice president of science and technology and as chair of the CANDU Owners Group, a Toronto-based private organization that promotes CANDU use around the world. He then became a consultant and director of nuclear technology at Kinectrics.

He opined on the nuclear industry’s future at a June 2017 conference. In the abstract of his lecture, Spekkens says “this future will, of course, depend heavily on technology. But also (and perhaps equally) important will be non-technical considerations such as public acceptance, a pipeline full of qualified future employees, public policy in several levels of government, and of course, finances.”

@nowtoronto

September 17, 2019 Posted by | Reference, secrets,lies and civil liberties, space travel, weapons and war | Leave a comment

The danger, the unwisdom, of highly enriched uranium in space

Do we need highly enriched uranium in space (again)?  Bulletin of the Atomic Scientists By Christopher Fichtlscherer, September 12, 2019 “……. Weapon-grade fuel for the Mars mission. In this rush to realize the old dream of space colonization, a central question is how to provide a planetary base with electrical power. Currently it seems as though NASA is in favor of nuclear energy. Most recently, on August 20, 2019, President Trump issued a presidential memorandum authorizing the possible launch into space of nuclear reactors fueled by highly enriched uranium (HEU) for “orbital and planetary surface activities.” But sending HEU reactors into space is risky and unnecessary because there are viable options for using low-enriched uranium (LEU), or for avoiding nuclear power altogether by harnessing solar energy.

Since 2015, NASA has funded a group at Los Alamos National Laboratory to build what is called the Kilopower reactor, a nuclear fission reactor for space applications. The Kilopower reactor is a sodium-cooled fast-neutron reactor with a block core that produces electrical energy with Stirling engine heat converters. NASA plans to build four or five Kilopower reactors, each with a lifetime of 12 to 15 years and a continuous energy output of 10 kilowatts, which could meet the energy needs of a possible Mars base. This Kilopower fast reactor could be fueled with either LEU or HEU. While the LEU fuel for the Kilopower reactor would contain 19.75 percent uranium 235, the HEU fuel would contain 93 percent of this isotope, a degree of enrichment that is called “weapon-grade.” In the newest prototype, these two versions of the fast reactor have essentially the same design but differ by size and weight. Los Alamos published a white paper about the Kilopower reactor in August 2017 supporting the LEU designs, but half a year later the lab successfully tested the HEU design. In October 2018, Los Alamos published a second white paper that favored HEU on the grounds that it would have a lighter weight.

Indeed, the HEU version of the Kilopower reactor is lighter, but it comes with alarming risks: the block fuel element contains around 43 kilograms of HEU, enough material for a terrorist group to build a nuclear weapon. There is also a proliferation risk. Kilopower would establish a precedent that other states could use to justify their own production of weapon-grade uranium. That is why, over the last four decades, the United States has led an international effort to persuade research reactor operators to switch from using HEU to using LEU. Building an HEU-fueled space reactor would undermine those attempts and the nonproliferation policies that inform them.

There are other downsides beyond the security risks. For example, the use of HEU would exclude private industry from taking part in space-reactor research and development. Such a reactor would also be more expensive than the LEU version because of the high costs required to secure significant quantities of HEU during the development and the launch. Finally, an HEU reactor would be sure to stir controversy for the reasons mentioned above and would be subject to cancellation by Congress.

Beyond that, the main advantage of the HEU reactor may not actually be much of an advantage. In 2015 scientists from the Korea Atomic Energy Research Institute, and in 2018 scientists from the Colorado School of Mines, each published designs for different, lighter LEU reactor models with a similar power output to the Kilopower LEU version. Moreover, it seems realistic that we can expect further weight and launching cost reductions well before a Mars colonization mission could start.

Accident risks. Sending nuclear reactors into space is not a new idea. The Soviet Union launched over 30 into orbit during the Cold War to power radars that tracked the US Navy. The United States launched only one reactor, in 1965. Dubbed the SNAP-10A, it had to be shut down after only 43 days due to an electrical component failure.

Most of these reactors are still orbiting above us—but not all of them. For example, the Soviet Kosmos 954 reactor crashed to earth in 1978, spreading radioactive material over a large area of northern Canada. In total there is about one ton of nuclear material in orbit, and all of it is at risk of colliding with other space debris and coming back to earth.

Major accidents have occurred in over 20 percent of space reactor missions. That is probably one of the reasons why no country has launched a reactor into space since the Cold War. Given these issues, why not avoid radioactive material for space missions altogether? Perhaps solar energy should be the first choice for electrical energy in space. Most satellites launched into space get their energy from solar panels, as does the international space station, which has successfully operated for over 10 years with solar arrays that produce up to 120 kilowatts of electricity. The NASA Mars rover Opportunity ran for over 14 years powered by solar panels. In short, the difficulties of running a solar power system on Mars seem manageable.

If we really want to build a Mars base in the not-so-distant future, why should we go with weapon-grade uranium, with all its security and proliferation risks, when we have both the option of affordable alternative LEU designs and solar options that eliminate these risks?  https://thebulletin.org/2019/09/do-we-need-highly-enriched-uranium-in-space-again/?utm_source=Newsletter&utm_medium=Email&utm_campaign=Newsletter09162019&utm_content=NuclearRisk_UraniumInSpace_09122019

September 17, 2019 Posted by | Reference, space travel | Leave a comment

Russia’s Floating Nuclear Power Plant Arrives At Far East Base Pevek

Russia’s Floating Nuclear Power Plant Arrives At Far East Base,  https://www.rferl.org/a/russia-s-floating-nuclear-power-plant-arrives-at-far-east-base/30164346.html    Russia’s first floating nuclear power plant has reached its final destination in the country’s remote Far East after a three-week, 5,000-kilometer journey.

Russia’s state nuclear energy company Rosatom announced on September 14 the arrival in the Arctic port town of Pevek of the nuclear power plant, which Greenpeace has dubbed a “floating Chernobyl.”

The massive plant — a 140-meter towed platform that carries two 35-megawatt nuclear reactors set sail from Murmansk, in northwestern Russia, on August 23 and traveled along the Northern Sea Route to its destination off the coast of Chukotka.

Rosatom said small surrounding communities, along with mining facilities and offshore oil and natural gas platforms, would make use of the electricity.

The nuclear plant has been named the Akademik Lomonosov after the 18th-century Russian scientist Mikhail Lomonosov.

September 16, 2019 Posted by | Russia, technology | Leave a comment

Small nuclear reactors safe? Not so

HELEN CALDICOTT: Small modular reactors — same nuclear disasters  https://independentaustralia.net/politics/politics-display/helen-caldicott-small-modular-reactors–same-nuclear-disasters,13087

By Helen Caldicott | 9 September 2019  The Morrison Government has opened the door to the notion of nuclear power as peddled by the nuclear sociopaths.

Now that the “nuclear renaissance” seems dead and buried following the Fukushima catastrophe (one-sixth of the world’s nuclear reactors were closed after the accident), the corporations invested in making nuclear plants and radioactive waste –including Toshiba, Nu-Scale, Babcock and Wilcox, GE Hitachi, General Atomics and the Tennessee Valley Authority – are not to be defeated.

Their new strategy is to develop small modular reactors (SMR), which can be sold around the world without, they say, the dangers inherent in large reactors — safety, cost, proliferation risks and radioactive waste.

There are basically three types of SMRs which generate less than 300 megawatts of electricity compared to the current 1,000-megawatt reactors.


Light water reactor 
designs

These will be smaller versions of present-day pressurised water reactors using water as the moderator and coolant but with the same attendant problems as Fukushima and Three Mile Island. They are to be built underground, which obviously makes them dangerous to access in the event of an accident or malfunction.

They will be mass-produced (turnkey production) and large numbers must be sold yearly to make a profit. This is an unlikely prospect because major markets – China and India – will be uninterested in buying U.S. reactors when they can make their own.

If a safety problem arises, such as with the Dreamliner plane, all of them will have to be shut down — interfering substantially with electricity supply.

SMRs will be expensive because the cost of unit capacity increases with decrease in the size of the reactor. Billions of dollars of government subsidies will be required because Wall Street will not touch nuclear power. To alleviate costs, it is suggested that safety rules be relaxed — including reducing security requirements and a reduction in the ten-mile emergency planning zone to 1,000 feet.


Non-light water
 designs

These are high-temperature gas-cooled reactors (HTGR) or pebble bed reactors. Five billion tiny fuel kernels of high-enriched uranium or plutonium will be encased in tennis-ball-sized graphite spheres which must be made without cracks or imperfections — or else they could lead to an accident. A total of 450,000 such spheres will slowly be released continuously from a fuel silo, passing through the reactor core, and then re-circulated ten times. These reactors will be cooled by helium gas operating at very high temperatures (900 C).

The plans are to construct a reactor complex consisting of four HTGR modules located underground to be run by only two operators in a central control room. It is claimed that HTGRs will be so safe that a containment building will be unnecessary and operators can even leave the site — “walk-away-safe” reactors.

However, should temperatures unexpectedly exceed 1600 degrees Celsius, the carbon coating will release dangerous radioactive isotopes into the helium gas and at 2000 C, the carbon would ignite creating a fierce graphite Chernobyl-type fire.

If a crack develops in the piping or building, radioactive helium would escape and air would rush in igniting the graphite.

Although HTGRs produce small amounts of low-level waste, they create larger volumes of high-level waste than conventional reactors.

Despite these obvious safety problems and despite the fact that South Africa has abandoned plans for HTGRs, the U.S. Department of Energy has unwisely chosen the HTGR as the “Next Generation Nuclear Plant”.


Liquid metal fast reactors 
(PRISM)

It is claimed by the proponents that fast reactors will be safe, economically competitive, proliferation-resistant and sustainable.

They are to be fueled by plutonium or highly enriched uranium, and cooled by either liquid sodium or a lead-bismuth molten coolant creating a potentially explosive situation. Liquid sodium burns or explodes when exposed to air or water and lead-bismuth is extremely corrosive producing very volatile radioactive elements when irradiated.

Should a crack occur in the reactor complex, liquid sodium would escape burning or exploding. Without coolant, the plutonium fuel would melt and reach critical mass, inciting a massive nuclear explosion. One-millionth of a gram of plutonium induces cancer and it lasts for 500,000 years. Yet it is claimed that fast reactors will be so safe that no emergency sirens will be required and emergency planning zones can be decreased from ten miles to 1,300 feet.

There are two types of fast reactors, a simple plutonium fueled reactor and a “breeder”. The plutonium reactor core can be surrounded by a blanket of uranium 238, the uranium captures neutrons and converts to plutonium creating ever more plutonium.

Some are keen about fast reactors because plutonium waste from other reactors can be fissioned converting it to shorter-lived isotopes like caesium and strontium which last “only” 600 years instead of 500,000. But this is fallacious thinking because only ten per cent is fissioned leaving 90 per cent of the plutonium for bomb-making and so on.

Construction

Three small plutonium fast reactors will be arranged together forming a module. Three of these modules will be buried underground and all nine reactors will connect to a fully automated central control room. Only three reactor operators situated in one control room will be in control of nine reactors. Potentially, one operator could simultaneously face a catastrophic situation triggered by the loss of off-site power to one unit at full power, in another shut down for refuelling and in one in start-up mode.

There are to be no emergency core cooling systems.

Fast reactors will require a massive infrastructure including a reprocessing plant to dissolve radioactive waste fuel rods in nitric acid, chemically removing the plutonium and a fuel fabrication facility to create new fuel rods. A total of 15,000 to 25,000 kilos of plutonium are required to operate a fuel cycle at a fast reactor and just 2.5 kilos is fuel for a nuclear weapon.

Thus, fast reactors and breeders will provide the perfect plan for nuclear weapons proliferation and despite this danger, the industry plans to sell them to many countries.

September 10, 2019 Posted by | 2 WORLD, Reference, safety, Small Modular Nuclear Reactors | Leave a comment

China’s plans for a nuclear-powered icebreaker ship

Checking in on China’s Nuclear Icebreaker, Speculation has trailed the news that China’s first nuclear-powered icebreaker ship was in the works. The Diplomat, By Trym Aleksander Eiterjord September 05, 2019  In June 2018, on the heels of China’s Arctic White PaperThe Diplomat reported on a tender issued by China National Nuclear Corporation (CNNC), the country’s largest nuclear operator, to build what would be China’s first nuclear-powered icebreaker.

Calling for bids to provide technical consultancy services on a “nuclear-powered icebreaker and comprehensive support vessel demonstration project,” the tender left ample room for speculation. The bidder would provide “verification and consultancy services” throughout all stages of the project — from basic design to construction and testing — both on the vessel itself and the onboard nuclear propulsion system. ……

Nuclear icebreakers might, on the one hand, mark a convergence of China’s Arctic and broader naval ambitions. On the other hand, however, such plans are likely to produce unfavorable optics for a country eager to be seen as a benign partner in the region. Unilaterally developing ships that would give the country outsized access to the maritime Arctic runs the risk of undermining China’s desired image – that of a gentle, “near-Arctic” giant.   https://thediplomat.com/2019/09/checking-in-on-chinas-nuclear-icebreaker/

September 10, 2019 Posted by | China, technology | Leave a comment

A small nuclear reactor was definitely the cause of the Russian missile engine explosion

 It can therefore be stated with certainty that the “isotopic source of energy” referred to by Rosatom was a nuclear reactor. 

The Mysterious Explosion of a Russian Nuclear Missile Engine The BESA CENTER. By Lt. Col. (res.) Dr. Raphael Ofek, September 6, 2019 BESA Center Perspectives Paper No. 1,280, September 6, 2019

EXECUTIVE SUMMARY: The fatal explosion that occurred recently during testing of the Russian Burevestnik nuclear cruise missile raises many questions. Could it have been avoided? Was it a fundamental failure of the ambitious armaments plan declared by President Putin in 2018? Whatever the answers to these questions, the renewed trend toward an unconventional armaments race could deteriorate into a second Cold War.

On August 8, during a test of the nuclear-powered engine of the 9M730 Burevestnik cruise missile (petrel in Russian; nicknamed the SSC-X-9 Skyfall in the West), held on a floating platform in the White Sea near the Nyonoksa missile test site in the far north of Russia, a mysterious explosion occurred that killed eight people. The blast raised questions about the status of a new generation of five advanced weapons introduced by Putin in 2018, of which Burevestnik, described by the Russian president as supersonic and of unlimited range, occupied pride of place.

Five of the eight people killed in the explosion were Rosatom (Russian State Atomiс Energy Corporation) employees, and three more employees were injured. According to the company’s announcement, the disaster occurred while testing an “isotopic energy source for a liquid propulsion system.”

Shortly after the explosion, the weather monitoring agency Roshydromet reported a significant spike in radiation 40 km from the blast site. Also, in the city of Severodvinsk, which is near the explosion site in the Archangelsk district, the radiation level was reported to have jumped to 16 times the normal level. This led the alarmed residents to rush to stock up on iodine, which reduces the effects of radiation exposure.

The initial response of the Russian authorities to the incident was befuddling (if reminiscent of their conduct in the wake of the Chernobyl disaster). Following the blast, residents of the village of Nyonoksa, which is close to the beach and adjacent to the blast site, were told to evacuate immediately – but the order was soon rescinded. Information about the blast was difficult to obtain. …….

According to the DIA (US Army Intelligence), 13 tests of the Burevestnik or its systems have been conducted since 2016, including the August 8 disaster. Only two can be classified as having been relatively successful. In a November 2017 test, a missile was launched from a site in Novaya Zemlya and all missile systems were tested during flight. But the flight lasted only about two minutes, during which the missile went 35 km and then crashed into the Barents Sea. Another test of the missile’s nuclear reactor was carried out in January 2019; according to the Russian news agency TASS, it was a success. …..

The nuclear jet engine sucks air through its nozzle and then compresses and heats it to a very high temperature through the nuclear reactor inside the engine, which is shaped like a hollow cylinder. The air is then emitted sharply outward from the rear, providing the missile with the thrust to move forward.

Rosatom said the failed experiment of August 8 was testing an “isotopic energy source for a rocket engine fueled with liquid fuel.” This negates the possibility that the source of energy applied to the Burevestnik missile is the metallic plutonium-238 isotope, as does the steep jump in the level of radioactivity in the areas near the explosion site. This is because plutonium-238 is not fissionable and therefore cannot be used as fuel for a nuclear reactor. Although this isotope is an alpha radiation emitter, it has very short-range radiation that is stopped after 5 cm of air.

With that said, the isotope’s potent alpha emission renders it usable as a radioisotope thermoelectric generator (RTG). Indeed, it was used by the US space program as an energy source. It can therefore be stated with certainty that the “isotopic source of energy” referred to by Rosatom was a nuclear reactor. The advantage of a nuclear reactor is that it allows a cruise missile to move through the air for a very long time, giving it an essentially unlimited flight range. 

However, the jump in radioactivity in the air near the blast site reduces the likelihood that the nuclear reactor installed in the Burevestnik missile is fueled with enriched uranium, or even highly enriched. It is therefore reasonable to conjecture that the nuclear fuel of the reactor is plutonium-239, which, in addition to being toxic, is radioactive. It is also more suitable for refueling a miniature reactor because its critical mass is five times lower than that of uranium-235, which makes it possible to reduce the reactor’s dimensions.

Moreover, it is possible that the plutonium fuel in the reactor was not metallic but in a saline state, which would further reduce the amount of plutonium needed to fuel it. This hypothesis might explain Rosatom’s reference to “an isotopic source of energy for a liquid-fueled rocket engine.” Rosatom conducts many activities related to the development of molten salt reactors (MSR). These are nuclear fission reactors in which the primary reactor coolant and/or nuclear fuel is a molten salt mixture, and they use plutonium-239 as fuel.

The August 8 rocket engine explosion appears to have been caused by a rapid jump in reactor criticality beyond the permitted level. Nuclear missiles use a liquid-fueled booster rocket to accelerate to a speed that will enable their reactors to operate. There is thus a high probability of failure during the launch phase due to an obstacle hindering synchronization between the rocket’s acceleration and the nuclear reactor system, or – either alternatively or in addition – a failure of the reactor’s criticality control system.

Taking an overall view, it appears we now have a resurgence of an unconventional armaments race between the big powers, at least for purposes of deterrence – a situation that could deteriorate into a second Cold War.

View PDF

Lt. Col. (res.) Dr. Raphael Ofek, a BESA Center Research Associate, is an expert in the field of nuclear physics and technology who served as a senior analyst in the Israeli intelligence community. https://besacenter.org/perspectives-papers/russia-nuclear-missile-engine/

 

September 7, 2019 Posted by | Reference, Russia, Small Modular Nuclear Reactors | Leave a comment

Akademik Lomonosov — the first floating nuclear power stations – both a nuclear and a climate danger

‘It is not just a nuclear risk, but a climate risk’   https://www.downtoearth.org.in/interviews/climate-change/-it-is-not-just-a-nuclear-risk-but-a-climate-risk–66520

Jan Haverkamp, a nuclear expert of Greenpeace (Central and Eastern Europe), spoke to Down To Earth on about Akademik Lomonosov — the first floating nuclear power stations — in Russia

By Rajit Sengupta, 04 September 2019  Akademik Lomonosov is the first among a fleet of a dozen floating nuclear power stations to be used for fossil fuel exploration and exploitation in the Arctic. Jan Haverkamp, a nuclear expert of Greenpeace (Central and Eastern Europe), spoke to Down To Earth on how this project is not only about increasing nuclear risk, but also increasing climate change risks.

How safe is Akademik Lomonosov?

Unlike nuclear submarines, the Akademik Lomonosov is a barge without own propulsion, meaning it can only float (or sink) and not dive. It means that if the mooring is broken, the barge is steerless, adding considerable to the risk when compared to a submarine or an ice-breaker.

It can also not dive away from an iceberg or avoid sea-ice by going deep. For its operations, it will be partially dependent on a coastal electricity link, which will also be used for electricity intake in times of trouble. The cable is lot more vulnerable than that of an on-land reactor.

Accidents with naval reactors have happened in the past. In 1970, an uncontrolled start-up of the reactor of the nuclear submarine K-320, at the Krasnoye Sormovo wharf in Nizhny Novgorod, Russia, caused the release of larger amounts of radioactivity. It led to 12 casualties and hundreds of people getting exposed to above-limit radiation doses.

An accident during fuel loading of the reactor of a nuclear submarine in Chazma Bay, in 1985, irradiated 290 workers leading to 10 casualties and 49 injured.

The radioactive content of the two reactors on board of the Akademik Lomonosov is around 25 times smaller than that of the Chernobyl nuclear power station, but is still considerable. A severe accident with bypass of the containment could cause substantial contamination kilometres downwind.

Will Akademik Lomonosov lead to further nuclearisation in Northern Sea Route?

The Akademik Lomonosov is a new step in the nuclearisation of the Arctic. The first was the introduction of nuclear submarines, followed by nuclear weapons, nuclear marine vessels, a few nuclear merchant ships and nuclear ice-breakers and the Bilibino nuclear power station, which is to be closed down soon.

Akademik Lomonosov is the first of a fleet of a dozen floating nuclear power stations that are to power ports to enable transport through the Northern Sea Route, and substantially increase fossil fuel exploration and exploitation in the Arctic. So it is not only about increasing nuclear risk, but also increasing climate change risks.

Russia plans to sell the technology to other countries including Sudan. Why are countries so interested in this technology?

The interest is much lower than what Rosatom (Russia’s state nuclear corporation) wants us to believe. Indonesia and Cabo Verde have already denied interest. I think Sudan, which was a military dictatorship a few months ago, is an exception.

Rosatom is making tall promises to sell the technology, which is unlikely to be fulfilled. It has promised financing, cheap or competitive electricity and waste management with little historical experience to back it up.

What has Russia benefitted from the project?

The Akademik Lomonosov is a symbol of the power-struggle between the old nuclear dinosaurs gathered in Rosatom and the upcoming and already much larger global clean renewable industry.

The Akademik Lomonosov is extremely expensive, certainly in comparison with viable renewable alternatives for Chukotka. Now nuclear power is being used to exploit more gas, oil and coal. Rosatom is a bad energy advisor for Russia and for foreign partners.

September 5, 2019 Posted by | climate change, Russia, technology | Leave a comment

France’s plan for a Generation IV nuclear reactor bites the dust

France drops plans to build sodium-cooled nuclear reactor. PARIS (Reuters) – France’s CEA nuclear agency has dropped plans to build a prototype sodium-cooled nuclear reactor, it said on Friday, after decades of research and hundreds of millions of euros in development costs.

Confirming a report in daily newspaper Le Monde, the state agency said it would finalize research in so-called “fourth generation” reactors in the ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration) project this year and is no longer planning to build a prototype in the short or medium term.

“In the current energy market situation, the perspective of industrial development of fourth-generation reactors is not planned before the second half of this century,” the CEA said.

In November last year the CEA had already said it was considering reducing ASTRID’s capacity to a 100-200 megawatt (MW) research model from the commercial-size 600 MW originally planned.

Le Monde quoted a CEA source as saying that the project is dead and that the agency is spending no more time or money on it.

Sodium-cooled fast-breeder reactors are one of several new designs that could succeed the pressurized water reactors (PWR) that drive most of the world’s nuclear plants. [tinyurl.com/y84d2hvc]

In theory, breeders could turn nuclear waste into fuel and make France self-sufficient in energy for decades, but uranium prices have been on a downward slope for a decade, undermining the economic rationale for fast-breeder technology.

There are also serious safety concerns about using sodium instead of water as a reactor coolant.

Since sodium remains liquid at high temperatures – instead of turning into steam – sodium reactors do not need the heavy pressurized hulls of PWRs. But sodium burns on contact with air and explodes when plunged into water.

An earlier French model was scrapped in the 1980s after encountering major technical problems.

The ASTRID project was granted a 652 million euro ($723 million) budget in 2010. By the end of 2017 investment in the project had reached 738 million euros, according to public auditor data quoted by Le Monde.

The CEA said a revised program would be proposed by the end of the year for research into fourth-generation reactors beyond 2020, in line with the government’s long-term energy strategy.

Reporting by Geert De Clercq; Editing by Leigh Thomas and David Goodman                    at top   https://www.reuters.com/article/us-france-nuclearpower-astrid/france-drops-plans-to-build-sodium-cooled-nuclear-reactor-idUSKCN1VK0MC

August 31, 2019 Posted by | France, reprocessing | Leave a comment

France’s sodium-cooled fast Nuclear reactor turns out to be a dud. Cancelled

News1 29th Aug 2019 The Astrid Fast Reactor Project is shut down by the Atomic EnergyCommission. A blow to the future of the sector. This was to be the nextstep in the development of the French nuclear industry, one that wouldallow it to project into the future, but which is likely never to see the
light of day. According to our information, the Astrid Fast Neutron Reactor
(RNR) project is being abandoned by the Atomic Energy and Alternative
Energies Commission (CEA), which is nevertheless at the origin.

https://www.news1.news/2019/08/france-abandons-the-fourth-generation-of-reactors.html

Le Monde 29th Aug 2019 Astrid, the acronym for Advanced Sodium Technological Reactor for Industrial Demonstration, is a sodium-cooled fast reactor prototype project to be built at the Marcoule nuclear site in the Gard.

The objective of this new generation is to use depleted uranium and plutonium as fuel, in other words to reuse the radioactive materials from the electricity generation of the current nuclear fleet and largely stored at the La Hague site. (Channel), operated by Orano (formerly Areva).

https://www.lemonde.fr/economie/article/2019/08/29/nucleaire-la-france-abandonne-la-quatrieme-generation-de-reacteurs_5504233_3234.html

August 31, 2019 Posted by | France, reprocessing | Leave a comment