The News That Matters about the Nuclear Industry

UN again to study the effects of depleted uranium contamination

depleted-uraniumUnited Nations highlights cost and difficulty of tackling depleted uranium contamination

Depleted uranium once again on the UN’s agenda as a new resolution is tabled that serves to remind the international community of the absence of rules governing its post-conflict management.
19 October 2016 – ICBUW A resolution submitted to the United Nations General Assembly’s First Committee draws attention to the technical and financial barriers that countries affected by the use of depleted uranium face following conflicts when they seek to clear contamination. The resolution also reminds governments that states, communities, health experts and civil society organisations remain profoundly concerned about the health and environmental risks that the weapons can pose.

The resolution is the sixth on the topic to be tabled at the General Assembly since 2007. Shortly before the last resolution was debated in 2014, Iraq called for assistance from the international community in addressing the legacy of DU use in the country in 1991 and 2003. The 2014 resolution, which was supported by 150 states, called on member states to provide such assistance. Disappointingly, assistance has not been forthcoming in the interim and the appalling security situation in Iraq has hampered efforts to assess and clear sites.

“Managing DU contamination to internationally accepted standards is complex, time-consuming and costly,” said ICBUW Coordinator Doug Weir. “Research has repeatedly shown that most countries recovering from conflict are poorly placed to implement these vital risk reduction measures, which are recommended by UN agencies, and it is civilians who all too often pay the cost of inaction.” Part of the problem lies in the fact that unlike land mines and cluster munitions, there are no formal obligations, on either those countries that use the weapons, or are affected by them, to clear them after conflicts.

Previous resolutions have passed by huge majorities, with just four states consistently voting against and, while it is unlikely that the UK, US, France and Israel will vote in favour this year, overall the number of governments abstaining has been on a downward trend since 2007. As a result, there is increasing focus on the likes of Canada, Denmark and a number of EU governments who refuse to vote yes, often on extremely dubious grounds.

However, it is Germany that many will be watching. In 2014, the German government abstained on the DU resolution for the first time, triggering a backlash from German parliamentarians and civil society. A parliamentary question urging the government to vote yes was tabled in September by the Green Party. “Germany has got to accept that the potential hazards from DU contamination are widely accepted by the UN agencies that recommend remedial measures, and by their own military, who take a precautionary approach to DU in their own guidelines,” said PAX’s Wim Zwijnenburg. “Doubtless the German authorities would take steps to prevent civilian harm if DU were dispersed in Germany, why should it be different for other countries following conflicts?”

What will the resolution achieve?

The resolutions do not seek to ban DU weapons, however they do underscore the fact that the overwhelming majority of governments object to their use. Each resolution is also helping to define soft norms around some of the most problematic issues surrounding DU. One of these, the need for DU users to share data on where they fire the weapons, has featured since 2010, and its importance was highlighted by a recent report from PAX and ICBUW over DU use in the 2003 Iraq War. The report showed that more than half the DU fired by the US is still unaccounted for, and that the refusal of the US to release data to UN agencies hampered their post-conflict assessments.

Voting on the resolution will take place in early November. A second vote will take place in early December. You can follow the debate on social media using #FirstCommittee and by following @ICBUW

October 22, 2016 Posted by | 2 WORLD, depleted uranium, Reference | Leave a comment

Depleted uranium: USA ignored its own guidelines in weapons use in Iraq. Syria too?

A new resolution on DU weapons will be voted on by governments at the UN General Assembly this month.  
depleted-uraniumUS broke its own rules firing depleted uranium in Iraq

An analysis of recently declassified military data shows that the United States military ignored its own guidelines for the use of depleted uranium ammunition in the 2003 Iraq War, firing the controversial weapons at unarmoured targets, buildings in populated areas and troops. It has also tripled the number of sites known to be contaminated in Iraq to more than 1,000; even as fears grow that the US has used depleted uranium in Syria.
5 October 2016 – ICBUW

The targeting data, which details the use of 30mm DU ammunition by USAF A-10 Thunderbolt II aircraft – or “Warthogs”, was released under FOIA and accounts for 54,000kg of the 118,000kg of DU ammunition that the US and UK have acknowledged firing in the conflict. Analysis by PAX and ICBUW of the 1,116 strikes, which took place during the first month of the 2003 invasion, and published in a new report Targets of Opportunity shows that DU use was widespread across Iraq.

For the first time, the data also reveal that the majority of targets attacked with the radioactive and chemically toxic weapons were not armoured. This runs counter to claims by the US that the A10’s ammunition is specifically for destroying tanks and other armoured vehicles. A significant number of the 182,000 30mm PGU-14/B rounds fired by the aircraft – each of which contains 298g of DU – were also fired in or near populated areas, increasing the likelihood that civilians would be exposed.

The need to destroy armour is central to the US’s ongoing military justification for the use of the weapons, which place civilians at risk of exposure and leave a complex and costly legacy for years after the end of conflicts. The US’s own legal guidelines, which were placed on the use of the armour-piercing incendiary weapons in 1975, restricts their use to armoured vehicles, a restriction that appears to have been ignored in the 2003 conflict.

Little transparency, even less assistance

While the UK released information to the UN on where it fired 1,900kg of DU, the US is still withholding data on where it fired 62,000kg of the weapons. This is hampering clearance work. PAX has reported that Iraq continues to struggle with the identification and remediation of DU contaminated sites, and the country has called for assistance in doing so from the international community.

“With the current burden of fighting the Islamic State, the Iraqi government’s capacity is already stretched. But people are worried about DU contamination, especially in southern Iraq,” says one of the report’s authors, PAX’s Wim Zwijnenburg. “The US did too little, too late, and now Iraq’s people are facing layer upon layer of toxic health risks as a result of the conflicts.”

“At present countries that use DU weapons, or are affected by them, are under no formal obligations to clear contamination after conflicts in order to minimise the risks it poses to civilians,” said co-author Doug Weir from ICBUW. “This is in stark contrast to land mines, cluster munitions and other explosive remnants of war. Governments must take steps to meaningfully address the legacy from DU and other toxic remnants of war that can harm civilians and their environment for years after the end of conflicts.” 

New information suggests that A-10s have used DU in Syria n early 2015, the US stated – contrary to previous claims – that its A-10 aircraft had not and would not use DU in Iraq or Syria in operations against Islamic State. However information obtained by ICBUW suggests that US A-10s have used DU on at least two occasions in Syria.

ICBUW and PAX are calling for urgent clarification from the US authorities on both the incidents and its DU policy for the conflict, and for them to swiftly release the targeting data to ensure that the relevant authorities can conduct clearance and risk awareness efforts and to isolate and recover contaminated material.

A new resolution on DU weapons will be voted on by governments at the UN General Assembly this month.         :

October 19, 2016 Posted by | depleted uranium, Iraq, Reference, USA | Leave a comment

The consequences of a nuclear plant meltdown – as they would apply to NewYork’s nuclear plants

exclamation-taxpayer bailoutBailing out aging nuclear power plants can impact development of renewable energy technologies, Enformable,  17 Oct 2016  “…………Beyond Dollars—It’s About Life

And this, most importantly, is beyond dollars—it’s about life.

The most comprehensive study of the consequences of a nuclear plant meltdown with loss of containment was done for the U.S. Nuclear Regulation Commission, which succeeded the Atomic Energy Commission, by Sandia National Laboratories in 1982. It’s title: Calculation of Reactor Accident Consequences or CRAC2.

The study projected “peak early fatalities,” “peak early injuries,” peak cancer deaths” and “scaled costs” in the billions of dollars for such a meltdown at every nuclear plant in the United States. In “scaled costs” the study itemizes “lost wages, relocation expenses, decontamination costs, lost property” but it is noted that “the cost of providing health care for the affected population” is not included. The nuclear industry and nuclear promoters in government were so upset with the release of this analysis that I doubt there will ever be anything like it again. I’ve distributed a breakdown of the CRAC2 numbers done by the House Subcommittee on Oversight & Investigations for your review.

The figures—and we’re speaking here of lives not mere numbers—for the four nuclear plants that would be bailed out under the Cuomo plan are:
Ginna — 2,000 fatalities, 28,000 injuries, 14,000 cancer deaths and $63 billion in costs—based on the value of the 1980 dollar. It would be three times that now.
FitzPatrick – 1,000 fatalities, 16,000 injuries, 17,000 cancer deaths and $103 billion in costs.
Nine Mile Point which consists of two nuclear power plants.
Unit 1 — 700 fatalities, 11,000 injuries, 14,000 cancer deaths, $66 billion in costs.
And Nine Mile Point 2 – 1,400 fatalities, 2,600 injuries, 20 000 cancer deaths, $134 billion in costs.

Also, as we have seen from Three Mile Island, Chernobyl and Fukishima, nuclear accidents are not rare events, like the BNL scientists told me, and not minor. With a little more than 400 nuclear power plants in the world, 100 in the U.S., disaster has occurred nearly every decade.

And if the next nuclear disaster is to strike anywhere, it could easily happen at these four old nuclear plants. Nuclear plants were only seen as operating for 40 years. After that, the metals would become embrittled from radioactivity creating unsafe conditions. So they were given 40-year operating licenses. But the Nuclear Regulatory Commission has gone ahead in recent times and given 20-year license extensions to now more than 80 of the nuclear plants in the U.S.—including the four upstate plants. This would allow them to run for 60 years. And the NRC is considering having an additional license extension program to allow nuclear plants to run for 80 years. It’s just asking for disaster. Considering taking a 60-year car on to the LIE or an Interstate and driving it at full speed—and that’s also part of the NRC program, allowing the nuclear plants given extensions to “uprate”—run hotter and harder to produce more electricity.

In terms of age, Nine Mile Point Unit 1 went online in 1969 and is one of the two oldest nuclear plants in the U.S., tied with Oyster Creek in New Jersey. Ginna started operating in 1970. FitzPatrick in 1975. These are from-the-past machines prone to mishap.

Excelon: 800 Pound Nuclear Gorilla
But there’s an 800 pound nuclear gorilla heavily involved in the bail-out plan—a company called Excelon. It’s the major owner of three of the plants—Ginna and the two Nine Mile Point plants—and Excelon has made a $110 million deal to buy FitzPatrick from Entergy with the bail-out deal in mind……….

October 19, 2016 Posted by | Reference, safety, USA | Leave a comment

USA’s Nuclear Regulatory Commission’s Safety Directives

safety-symbol-SmFlag-USANuclear (Information) Power, UCS,  , DIRECTOR, NUCLEAR SAFETY PROJECT | OCTOBER 18, 2016 DISASTER BY DESIGN/SAFETY BY INTENT #54

Safety by Intent

Robin Morgan wrote that “Knowledge is power. Information is power.”

Among many lessons learned from the March 1979 core meltdown at Three Mile Island was the need to collect, assess, and disseminate relevant operating experience in a timely manner. In other words, nuclear information has the power to promote nuclear safety, but only when that information is shared so as to replicate good practices and eradicate bad ones. Both the Nuclear Regulatory Commission (NRC) and the nuclear industry undertook parallel efforts after Three Mile Island to improve operating experience efforts.

NRC’s Information Sharing

The centerpiece of the NRC’s operating experience efforts is its generic communications program. The NRC instituted this program before the Three Mile Island accident, but took steps following the accident to expand the program and to shorten the time between events and advisories. The NRC also lowered the threshold used to screen the information to share more operating experience with plant owners.

The NRC has issued thousands of generic communications since the Three Mile Island accident.Bulletins and Generic Letters typically alert owners to a potential problem and require them to either confirm their facilities are not vulnerable or implement measures to reduce vulnerabilities.Regulatory Issue Summaries and Information Notices typically apprise owners about operating experience but do not require that the owners take specific actions in response.

Examples illustrating these various generic communications are:

    • Bulletin 2003-01, “Potential Impact of Debris Blockage on Emergency Sump Recirculation at Pressurized Water Reactors,” warned owners that a rupture inside containment of a pipe filled with steam or water could generate large amounts of debris as the high pressure fluid jetting from the broken pipe ends scoured coatings off equipment, insulation off piping, and even paint off walls…….
    • Generic Letter 2007-01, “Inaccessible or Underground Power Cable Failures that Disable Accident Mitigation Systems or Cause Plant Transients,” warned owners about a rash of unexpected failures of electrical cables. Many of the electrical cables had been qualified for 40 years of service, but failed before the end of their qualified lifetimes due to submergence in water. Several of the failed cables had been routed through underground metal conduits and buried concrete trenches. Groundwater or rainwater leaked into the conduits and trenches, subjecting the cable insulation to more rapid deterioration than anticipated………
    • Information Notice 2011-13, “Control Rod Blade Cracking Resulting in Reduced Design Lifetime,” warned owners of boiling water reactors about experience at a foreign nuclear plant. Workers discovered severe degradation of the control rods caused by irradiation-assisted stress-corrosion cracking. …….
    • Regulatory Issue Summary 2015-11, “Protective Action Recommendations for Members of the Public on Bodies of Water,” reminded owners of their obligations under Appendix E, “Emergency Planning and Preparedness for Production and Utilization Facilities,” to 10 CFR Part 50. Specifically, the regulatory issue summary reinforced the NRC’s expectation that owners’ emergency plan measures account for all affected members of the public whether on land or on water.
    • Regulatory Issue Summary 2014-12, “Decommissioning Fund Status Report Calculations—Update to Low-Level Waste Burial Charge Information,” informed owners that they could use data in Revision15 of NUREG-1307, “Report on Waste Burial Charges: Changes in Decommissioning Waste Disposal Costs at Low-Level Waste Burial Facilities,” in preparing periodic funding status reports required by 10 CFR 50.75(f). Owners are required to estimate the cost of decommissioning their facilities based on (1) labor rates, (2) energy costs, and (3) low-level waste disposal costs. The U.S. Department of Labor periodically publishes data on labor and energy costs that owners can use. The regulatory information summary identified a source of low-level waste disposal cost data acceptable to the NRC.

Nuclear Industry’s Information Sharing

The nuclear industry formed the Institute for Nuclear Power Operations (INPO) in December 1979 as part of its responses to the Three Mile Island accident. Information sharing is one of several functions performed by INPO to support the nuclear industry……..

UCS’s Disaster by Design/ Safety by Intent series of blog posts is intended to help readers understand how a seemingly unrelated assortment of minor problems can coalesce to cause disaster and how effective defense-in-depth can lessen both the number of pre-existing problems and the chances they team up.


October 19, 2016 Posted by | Reference, safety, USA | Leave a comment

The rise and political rise of Russia’s secretive nuclear tsar Sergey Kirienko

Russian media tell us that Kirienko and his PR team are off to the Kremlin to prepare Putin’s next election campaign. Looking at Kirienko’s 11 years as head of Russia’s nuclear power industry, we can say that in terms of spending and achievements on paper, Rosatom’s former head has few equals. Kirienko’s team are experts at working with the media, putting pressure on dissenters and forging loyalty

Kiriyenko--tsarSergey Kirienko, from nuclear to political power, Open Democracy VLADIMIR SLIVYAK 11 October 2016  After ten years as head of Rosatom, Sergey Kirienko is now deputy head of Russia’s Presidential Administration. What will he bring to the job? “…….

Information and secrecy

News of these two appointments came out rather oddly. Prior to 24 September, when RBC broke the story of Kirienko’s appointment, there had been no rumours at all about Kirienko’s move, and another two weeks passed before he was officially given his new job…….

This fact illustrates the effectiveness of Kirienko’s PR team. All of Rosatom’s information channels are hermetically sealed, and if any important news appears, it is only by the grace of the residents of the agency’s enormous headquarters building on Moscow’s Bolshaya Ordynka street. There has been the odd information leak, but usually involving foreign media, which Rosatom has little control over.

The way Kirienko’s appointment has developed as a story demonstrates the level of openness, or rather lack of it, which Kirienko’s team has created in recent years. If a major accident had occurred at a nuclear power plant in Russia during Kirienko’s time at Rosatom, it is unlikely that anyone would have heard about it for some time. Instead, there would have been a scenario reminiscent of 1986, when the Soviet government tried to hush up the scale of the Chernobyl disaster for as long as possible.

This lack of transparency is dangerous precisely because in the case of another nuclear accident, it could be a matter of life and death. And this is not a question of official secrets or nuclear weapons. Rosatom is funded by Russia’s taxpayers and has to be accountable to them — not in terms of reporting how many “mini-Olympics” have taken place at nuclear power plants, but in terms of public safety.

Paper power plants

Kirienko’s legacy at Rosatom is a separate issue. Given this recent appointment, he is, it seems, highly regarded by the Kremlin.

There may have been two to three times fewer nuclear power plants built on his watch than were planned. There may have been plenty of corruption scandals involving the arrest of senior staff, including Kirienko’s deputies, on embezzlement charges. But the corporation’s “portfolio” for power plants to be built abroad is worth an astronomical $100bn. And for the Kremlin, which periodically uses energy supply threats to put pressure on countries it is displeased with, nuclear power is not just a question of prestige and money.

To assess Kirienko’s effectiveness as a manager, however, we need to look inside Rosatom’s commission portfolio. These “orders” are not contracts specifying delivery dates, costs and a clear timescale for loan repayments (in most cases the money lent by Russia for power plant construction comes with a repayment date). Eighty to ninety per cent of these reported arrangements are agreements in principle that are vague on details, and in the overwhelming majority of cases the contracts aren’t worth the paper they’re printed on.

Russian media frequently give the impression that Rosatom is building reactors all over the world. It is true that there have been orders from over 20 countries, but they are actually being built in only three places — China, India and Belarus. And in the case of the first two, international cooperation began long before Kirienko joined the nuclear energy sector.

So it is clear that Kirienko’s team has been excellent at drawing up and signing papers, and providing an information blockade for the industry. Actually building nuclear plants seems to be beyond them.

But only abroad…

October 15, 2016 Posted by | politics, Reference, Russia | Leave a comment

1986 “glossy safe” image of nuclear industry – still being spun today

Dr Pangloss

the long-term effects of low-level radiation exposure have consistently been downplayed, distorted or concealed by scientists, the nuclear industry and the government.

It seems that while the US and the USSR had a hard time cooperating on nuclear arms at that time, they had a tacit agreement to cover up each other’s nuclear power mistakes.

these facts, like all those about nuclear power and nuclear weapons testing, were kept secret and released only through the efforts of private citizens and a few courageous researchers and journalists.

At least 250,000 American troops were directly exposed to atomic radiation during the 17 years of bomb testing here and in the Pacific, but they have been totally ignored by the government and the Army.

There is little doubt that hundreds died and that countless others developed illnesses that led to death from various cancers, blood disorders and chronic body ailments. Today the government still rejects all claims for such illnesses.

The press also played a role in soothing public fears.

the US has led the world in setting examples of deliberate deceit, suppression of information and harassment of nuclear critics

Professionals, in order to perform their work, resist truth strongly if it calls the morality of their work into question. They sincerely believe they are helping humankind. In addition, scientific research involves so many uncertainties that scientists can, with an easy conscience, rationalize away dangers that are hypothetical or not immediately observable. They also have an intellectual investment if not a financial one in continuing their work as well as families to support, and nuclear science in particular has been endowed not only with government money and support but great status and prestige.

In order to perform professional work, one must not only believe one is doing good but must also rationalize the dangers. Indeed, with regard to ionizing radiation, this is quite easy inasmuch as the risks of radiation exposure at any level are statistical and not immediately manifested.

highly-recommendedPro Nuclear Propaganda: How Science, Government and the Press Conspire to Misinform the Public by Lorna Salzman Hunter College, Energy Studies program, 1986  After the Chernobyl nuclear reactor disaster in the Soviet Union, there was much finger-wagging in the US about the suppression of information there, and the purported differences in reactor design and safety requirements between Russia and the US, which made a similar accident here unlikely if not impossible Continue reading

October 15, 2016 Posted by | 2 WORLD, history, media, Reference, secrets,lies and civil liberties, spinbuster | Leave a comment

If they didn’t have mental problems before, Mars travellers sure will afterwards!

45213-fukushima-nuclear-radiation-cover-up-what-radiationMars-goers may face permanent brain damage from cosmic radiation Oct. 12, 2016 Deep space travel could cause serious, irreversible brain damage, NBC News reports. Scientists have long known that leaving Earth’s magnetosphere—the magnetic bubble of plasma surrounding our planet—strips astronauts of their protection from radioactive particles, putting them at higher risk for health issues, including heart disease. Now, a new study out this week in Scientific Reports suggests that changes at the cellular level could also lead to worsened anxiety and even brain cancer. That could be bad news for NASA and other commercial space companies that want to send humans to the Red Planet by 2030. But NASA is working on it: The agency is researching methods to prevent exposure to radiation, which could find their way into new, improved space suits.

October 14, 2016 Posted by | 2 WORLD, health, radiation, Reference | Leave a comment

Newborn baby deaths significantly increased in areas radioactively polluted by Fukushima nuclear disaster

Increases in perinatal mortality in prefectures contaminated by the Fukushima nuclear power plant accident in Japan A spatially stratified longitudinal study

 Hagen Heinrich Scherb, Dr rer nat Dipl-Matha,∗ , Kuniyoshi Mori, MDb , Keiji Hayashi, MDc 
Descriptive observational studies showed upward jumps in secular European perinatal mortality trends after Chernobyl. The question arises whether the Fukushima nuclear power plant accident entailed similar phenomena in Japan. For 47 prefectures representing 15.2 million births from 2001 to 2014, the Japanese government provides monthly statistics on 69,171 cases of perinatal death of the fetus or the newborn after 22 weeks of pregnancy to 7 days after birth.
Employing change-point methodology for detecting alterations in longitudinal data, we analyzed time trends in perinatal mortality in the Japanese prefectures stratified by exposure to estimate and test potential increases in perinatal death proportions after Fukushima possibly associated with the earthquake, the tsunami, or the estimated radiation exposure. Areas with moderate to high levels of radiation were compared with less exposed and unaffected areas, as were highly contaminated areas hit versus untroubled by the earthquake and the tsunami.
Ten months after the earthquake and tsunami and the subsequent nuclear accident, perinatal mortality in 6 severely contaminated prefectures jumped up from January 2012 onward: jump odds ratio 1.156; 95% confidence interval (1.061, 1.259), P-value 0.0009. There were slight increases in areas with moderate levels of contamination and no increases in the rest of Japan. In severely contaminated areas, the increases of perinatal mortality 10 months after Fukushima were essentially independent of the numbers of dead and missing due to the earthquake and the tsunami. Perinatal mortality in areas contaminated with radioactive substances started to increase 10 months after the nuclear accident relative to the prevailing and stable secular downward trend.
These results are consistent with findings in Europe after Chernobyl. Since observational studies as the one presented here may suggest but cannot prove causality because of unknown and uncontrolled factors or confounders, intensified research in various scientific disciplines is urgently needed to better qualify and quantify the association of natural and artificial environmental radiation with detrimental genetic health effects at the population level. …….

October 12, 2016 Posted by | children, Fukushima 2016, Japan, Reference | 3 Comments

Long term safety of spent nuclear fuel storage canisters is far from assured

text-relevantPremature failure of U.S. spent nuclear fuel storage canisters, San Onofre Safety,  

“……. The dry cask systems …..may fail within 30 years or possibly sooner, based on information provided by Nuclear Regulatory Commission (NRC) technical staff.
There is no technology to adequately inspect canisters.
There is no system in place to mitigate a failed canister…
Canisters may need to be replaced within 30-42 years or sooner.


Recent information provided by the NRC technical staff indicates dry storage canisters may need to be replaced within 30-42 years or sooner, due to stress corrosion cracking of the thin (1/2 to 5/8 inch) stainless steel canisters (due to our coastal environment). Similar stainless steel materials at nuclear plants have failed within 16 to 33 years.  The concrete overpacks also have aging issues that are accelerated in coastal environments…….
Recent information provided by the NRC technical staff indicates dry storage canisters may need to be replaced within 30-42 years or sooner, due to stress corrosion cracking of the thin (1/2 to 5/8 inch) stainless steel canisters (due to our coastal environment). Similar stainless steel materials at nuclear plants have failed within 16 to 33 years.  The concrete overpacks also have aging issues that are accelerated in coastal environments………
No canisters approved for high burnup fuel for more than the initial 20 years.
High burnup fuel cladding damage  The NRC has not extended licenses past the initial 20 years for storage of high burnup fuel (>45GWd/MTU) due to unknowns about high burnup fuel in storage and transport. This fuel is over twice as radioactive and hotter than lower burnup fuel.  The NRC has allowed nuclear plants to burn fuel longer, without the research to show that it is safe in storage and transport. The protective fuel cladding can become brittle and crack; resulting is higher risk for radiation exposure, if the canisters fail…….

October 10, 2016 Posted by | Reference, wastes | 1 Comment

How three brave Chernobyl workers saved Europe from nuclear catastrophe

exclamation-Despite Three Mile Island, Daiichi Power Plant in Japan and Chernobyl, the industry still poo-poos the danger. At Chernobyl, after the initial explosion, the 185 tons of melting nuclear waste was still melting down. When it reached the water a thermonuclear explosion would have occurred. It was estimated it would have wiped out half of Europe and made Europe, Ukraine and parts of Russia uninhabitable for 500,000 years. This was prevented when three workers volunteered to dive in the radioactive water and open the valves to drain the pool and prevent a second explosion, knowing it would mean death by radioactive poisoning. They succeeded in draining the pool, but died of radiation sickness within a few weeks. Their bodies remained radioactive and were buried in lead coffins.

  If a similar “incident,” as the nuclear industry insists they be called, happens in Clinton, do you think Rep. Bill Mitchell, the Clinton School Board, DeWitt County Board of any of the 700 workers or any other advocates of keeping the plant open will step forward?

October 10, 2016 Posted by | history, incidents, PERSONAL STORIES, Reference, Ukraine | Leave a comment

Spent nuclear fuel canisters vulnerable to failure as they age

text-relevantPremature failure of U.S. spent nuclear fuel storage canisters, San Onofre, by  “……Stainless Steel Dry Canister Problems   Darrell Dunn, an NRC materials engineer, stated stainless steel dry storage canisters are vulnerable to failure within about 25 – 42 years. If any of the fuel cladding in the canister fails, there is no protective barrier and we could have a serious radiation release.


The NRC said they have no current mitigation plan for that consequence.  They suggested we MIGHT be able to put the fuel back in the spent fuel pool.  However, Edison plans to destroy the spent fuel and transfer pools. And there is no technology to repair the canisters. The NRC said they HOPE there will be a solution for mitigation in the future. Even an NRC May 2nd High Burnup Fuel letter admits there are mitigation problems.

No Inspections of Stainless Steel Canisters EPRI 2012 presentation To make matters worse, these stainless steel canisters are not inspected after they are loaded into the unsealed concrete overpacks (Areva NUHOMS) or concrete casks (Holtec and NAC Magnastor).  The NRC proposed having each nuclear plant inspect the outside of only ONE stainless steel canister before they receive a license renewal and then do that once every 5 years.  The industry balked at having to even check one canister at every plant. The problem with the stainless steel canisters is they do not protect against gamma rays; so it’s not a simple task to remove a canister from the concrete overpack/cask to examine the exterior for corrosion or other degradation. And since welded canisters do not have monitoring for helium leaks, we may not have any warning of an impending radiation release.

Concrete Overpack Corrosion Problems  Darrell Dunn discussed serious corrosion problems with the concrete overpacks/casks, especially in coastal environments……..

October 10, 2016 Posted by | 2 WORLD, Reference, wastes | 1 Comment

Nuclear power leaves a terrible legacy of radioactive trash – new book

text-relevantThe Legacy of Nuclear Power,This fascinating short article on four nuclear communities tellingly demonstrates why radioactive waste is a moral issue and explains what the priorities for its management should be.   Routledge, By Andy Blowers. 7 Oct 16 


1. Hanford, USA

Scattered across a vast site in Washington state in America’s North West is Hanford, one of the most contaminated places in the world. During the war Hanford was the scene of frenzied activity as the chosen location for the manufacture of the plutonium for the ‘Fat Man’ nuclear weapon that devastated Nagasaki on 9 August, 1945. In the subsequent Cold War, Hanford’s nuclear activities expanded comprising eight nuclear reactors along the banks of the Columbia River, the sinister looking reprocessing ‘canyons’ in the middle of the reservation and a variety of production and experimental facilities scattered around its fringes. Production at Hanford has ceased but a vast nuclear legacy remains especially in the tank farms containing high-level liquid waste and sludge, some leaking towards the Columbia, in the abandoned reactors and decommissioned reprocessing works and in waste management facilities and clean-up projects. Cleaning up the legacy is a long-term, costly ($2billion federal funding a year), intractable and complex task but it is an inescapable one.

2. Sellafield, UK

Sellafield, the heart of the UK’s plutonium economy, is in a stage of transition from production to clean-up. Like Hanford, Sellafield’s nuclear legacy stretches back to the early days of the military nuclear programme when little attention was paid to the wastes. Unlike Hanford, the Sellafield site is very compact, a mere 2 sq. km., but crammed on to it is around two-thirds of all the radioactivity from the UK’s nuclear programme. The legacy comprises all the country’s high level wastes, most of the spent fuel, a stockpile of around 140 tonnes of plutonium and complex streams of wastes. Hemmed in within a complex of buildings, many of them redundant, are large grey anonymous structures containing often unrecorded mixtures of fuel, skips and other highly radioactive debris tipped into the notorious ponds and silos which pose what has been called an ‘intolerable risk’ to the public and the environment. Cleaning up this legacy is a task that stretches decades ahead absorbing around £1.7 billion from the government a year.

3. La Hague, France 

In France, where three-quarters of the country’s electricity is produced by its 58 reactors, the nuclear industry is mainly focused around the reprocessing facilities at La Hague at the tip of the Cotentin peninsula in Normandy. At this remote location spent fuel is reprocessed for recycling in the form of mixed oxide fuel (MOX) or vitrified and stored pending disposal. After much searching, an underground laboratory has been developed in eastern France at Bure, a nuclear no-man’s land, stealthily and steadily becoming established as the country’s nuclear disposal site, but still a long way off. Meanwhile, the French nuclear legacy continues to accumulate at power stations soon to be decommissioned, at La Hague and other sites of reprocessing and experimental reactors.

4. Gorleben, Germany

In Germany there has been fierce resistance for more than three decades to the prospect of shipping casks of highly radioactive wastes across the country to Gorleben in the middle of the country. The casks are sent to an interim store for possible burial in a neighbouring excavated salt mine. Gorleben has played both a symbolic and political role in bringing down the German nuclear industry. The symbols of protest festoon the countryside. There are the ubiquitous wooden yellow crosses on farms and villages, the bright orange sun on a green background displayed on posters and flags proclaiming the ‘Free Republic of Wendland’ and the slogan ‘Stop CASTOR’ (the soubriquet for the flasks) daubed on walls and electricity sub-stations. These gave identity to this fiercely independent land of forest, heath and waterlands close by the River Elbe. Drawing on this real and invented cultural legacy, the Gorleben movement became an inspiration for the wider German anti-nuclear protest.

Places on the Periphery

These four places, Hanford, Sellafield, La Hague/Bure and Gorleben with their different histories exemplify and explain the physical imprint and social conditions that are the continuing legacy of nuclear power. They constitute what may be defined as peripheral communities, places where hazardous activities are located and which are, as it were, physically and socially set apart from the mainstream. They tend to be geographically remote. They may be located at the edge whether of a country, as at La Hague, in relatively inaccessible sub-regions as at Sellafield or in areas of sparse population as Hanford was before the war and as Bure is today. They may be areas with a distinctive (real or invented) cultural identity or isolation like Gorleben, in the self-declared Wendland once on the border with Eastern Germany. Peripheral communities tend also to be economically marginal, monocultural and dependent on government investment and subsidy or state owned companies………..

October 8, 2016 Posted by | 2 WORLD, Reference, wastes | Leave a comment

China’s huge top secret nuclear base now finally declassified

Top secret Chinese nuclear base opens to foreigners [good photos] , , 6 Oct 15 IT’S A maze built to manufacture plutonium and house thousands of tonnes of explosives.

The 826 Nuclear Military Plant, a former top-secret Chinese base, is almost 20km wide, with 178 caves and more than 130 roads and tunnels.

The largest man-made cave in the world was commissioned in the 1960s, when Beijing feared an imminent nuclear attack from the Soviet Union.

More than 60,000 engineering soldiers participated in the construction, and at least 100 of them were reportedly killed during the process.

It’s hidden deep in the mountains of Fuling, in the Chongqing municipality of central China, and can reportedly withstand a magnitude 8.0 earthquake.

The largest cave is nearly 80m high, or roughly the height of a 20-storey building, and the tunnels are wide enough to drive through……..The huge undertaking took 17 years to build, and was nearly completed when it was abruptly cancelled due to changes in Cold War politics in 1984.

 After lying dormant for many years, it was officially declassified in 2002.

It’s just undergone an extensive renovation, and is now open to foreign visitors for the first time…….

October 6, 2016 Posted by | China, history, Reference, weapons and war | Leave a comment

Fast nuclear reactors might be hyped up, but their future looks gloomy

Nuclear: The slow death of fast reactors Jim Green, 5 Oct 2016, RenewEconomy,

Generation IV ‘fast breeder’ reactors have long been promoted by nuclear enthusiasts, writes Jim Green, but Japan’s decision to abandon the Monju fast reactor is another nail in the coffin for this failed technology.


Fast neutron reactors are “poised to become mainstream” according to the World Nuclear Association. The Association lists eight “current” fast reactors although three of them are not operating. That leaves just five fast reactors ‒ three of them experimental.

Fast reactors aren’t becoming mainstream. One after another country has abandoned the technology. Nuclear physicist Thomas Cochransummarises the history: “Fast reactor development programs failed in the: 1) United States; 2) France; 3) United Kingdom; 4) Germany; 5) Japan; 6) Italy; 7) Soviet Union/Russia 8) U.S. Navy and 9) the Soviet Navy. The program in India is showing no signs of success and the program in China is only at a very early stage of development.”

The latest setback was the decision of the Japanese government at an extraordinary Cabinet meeting on September 21 to abandon plans to restart the Monju fast breeder reactor.

Monju reached criticality in 1994 but was shut down in December 1995 after a sodium coolant leak and fire. The reactor didn’t restart until May 2010, and it was shut down again three months later after a fuel handling machine was accidentally dropped in the reactor during a refuelling outage. In November 2012, it was revealed that Japan Atomic Energy Agency had failed to conduct regular inspections of almost 10,000 out of a total 39,000 pieces of equipment at Monju, including safety-critical equipment.

In November 2015, the Nuclear Regulation Authority declared that the Japan Atomic Energy Agency was “not qualified as an entity to safely operate” Monju. Education minister Hirokazu Matsuno said on 21 September 2016 that attempts to find an alternative operator have been unsuccessful.

The government has already spent 1.2 trillion yen (US$12bn) on Monju. The government calculated that it would cost another 600 billion yen (US$6bn) to restart Monju and keep it operating for another 10 years.

Decommissioning also has a hefty price-tag ‒ far more than for conventional light-water reactors. According to a 2012estimate by the Japan Atomic Energy Agency, decommissioning Monju will cost an estimated 300 billion yen (US$3bn).

India’s failed fast reactor program   India’s fast reactor program has been a failure. The budget for the Fast Breeder Test Reactor (FBTR) was approved in 1971 but the reactor was delayed repeatedly, attaining first criticality in 1985. It took until 1997 for the FBTR to start supplying a small amount of electricity to the grid. The FBTR’s operations have been marred by several accidents.

Preliminary design work for a larger Prototype Fast Breeder Reactor (PFBR) began in 1985, expenditures on the reactor began in 1987/88 and construction began in 2004 ‒ but the reactor still hasn’t started up. Construction has taken more than twice the expected period. In July 2016, the Indian government announced yet another delay, and there is scepticism that the scheduled start-up in March 2017 will be realised. The PFBR’s cost estimate has gone up by 62%.

India’s Department of Atomic Energy (DAE) has for decades projected the construction of hundreds of fast reactors ‒ for example a 2004 DAE document projected 262.5 gigawatts (GW) of fast reactor capacity by 2050. But India has a track record of making absurd projections for both fast reactors and light-water reactors ‒ and failing to meet those targets by orders of magnitude.

Academic M.V. Ramana writes: “Breeder reactors have always underpinned the DAE’s claims about generating large quantities of electricity. Today, more than six decades after the grand plans for growth were first announced, that promise is yet to be fulfilled. The latest announcement about the delay in the PFBR is yet another reminder that breeder reactors in India, like elsewhere, are best regarded as a failed technology and that it is time to give up on them.”

Russia’s snail-paced program  Russia’s fast reactor program is the only one that could be described as anything other than an abject failure. But it hasn’t been a roaring success either.

Three fast reactors are in operation in Russia ‒ BOR-60 (start-up in 1969), BN-600 (1980) and BN-800 (2014). There have been 27sodium leaks in the BN-600 reactor, five of them in systems with radioactive sodium, and 14 leaks were accompanied by burning of sodium.

The Russian government published a decree in August 2016 outlining plans to build 11 new reactors over the next 14 years. Of the 11 proposed new reactors, three are fast reactors: BREST-300 near Tomsk in Siberia, and two BN-1200 fast reactors near Ekaterinburg and Chelyabinsk, near the Ural mountains. However, like India, the Russian government has a track record of projecting rapid and substantial nuclear power expansion ‒ and failing miserably to meet the targets.

As Vladimir Slivyak recently noted in Nuclear Monitor: “While Russian plans looks big on paper, it’s unlikely that this program will be implemented. It’s very likely that the current economic crisis, the deepest in history since the USSR collapsed, will axe the most of new reactors.”

While the August 2016 decree signals new interest in reviving the BN-1200 reactor project, it was indefinitely suspended in 2014, with Rosatom citing the need to improve fuel for the reactor and amid speculation about the cost-effectiveness of the project.

In 2014, Rosenergoatom spokesperson Andrey Timonov said the BN-800 reactor, which started up in 2014, “must answer questions about the economic viability of potential fast reactors because at the moment ‘fast’ technology essentially loses this indicator [when compared with] commercial VVER units.”


China’s program going nowhere fast   Australian nuclear lobbyist Geoff Russell cites the World Nuclear Association(WNA) in support of his claim that China expect fast reactors “to be dominating the market by about 2030 and they’ll be mass produced.”

Does the WNA paper support the claim? Not at all. China has a 20 MWe experimental fast reactor, which operated for a total of less than one month in the 63 months from criticality in July 2010 to October 2015. For every hour the reactor operated in 2015, it was offline for five hours, and there were three recorded reactor trips.

China also has plans to build a 600 MWe ‘Demonstration Fast Reactor’ and then a 1,000 MWe commercial-scale fast reactor. Whether those reactors will be built remains uncertain ‒ the projects have not been approved ‒ and it would be another giant leap from a single commercial-scale fast reactor to a fleet of them.

According to the WNA, a decision to proceed with or cancel the 1,000 MWe fast reactor will not be made until 2020, and if it proceeds, construction could begin in 2028 and operation could begin in about 2034.

So China might have one commercial-scale fast reactor by 2034 ‒ but probably won’t. Russell’s claim that fast reactors will be “dominating the market by about 2030” is unbridled jiggery-pokery.

According to the WNA, China envisages 40 GW of fast reactor capacity by 2050. A far more likely scenario is that China will have 0 GW of fast reactor capacity by 2050. And even if the 40 GW target was reached, it would still only represent aroundone-sixth of total nuclear capacity in China in 2050 ‒ fast reactors still wouldn’t be “dominating the market” even if capacity grows by orders of magnitude from 0.02 GW (the experimental reactor that is usually offline) to 40 GW.

 Travelling-waves and the non-existent ‘integral fast reactor’

Perhaps the travelling-wave fast reactor popularised by Bill Gates will come to the rescue? Or perhaps not. According to theWNA, China General Nuclear Power and Xiamen University are reported to be cooperating on R&D, but the Ministry of Science and Technology, China National Nuclear Corporation, and the State Nuclear Power Technology Company are all skeptical of the travelling-wave reactor concept.

Perhaps the ‘integral fast reactor’ (IFR) championed by James Hansen will come to the rescue? Or perhaps not. The UK and US governments have been considering building IFRs (specifically GE Hitachi’s ‘PRISM’ design) for plutonium disposition ‒ but it is almost certain that both countries will choose different methods to manage plutonium stockpiles.

In South Australia, nuclear lobbyists united behind a push for IFRs/PRISMs, and they would have expected to persuade a stridently pro-nuclear Royal Commission to endorse their ideas. But the Royal Commission completely rejected the proposal, noting in its May 2016report that advanced fast reactors are unlikely to be feasible or viable in the foreseeable future; that the development of such a first-of-a-kind project would have high commercial and technical risk; that there is no licensed, commercially proven design and development to that point would require substantial capital investment; and that electricity generated from such reactors has not been demonstrated to be cost competitive with current light water reactor designs.

A future for fast reactors?

Just 400 reactor-years of worldwide experience have been gained with fast reactors. There is 42 times more experience with conventional reactors (16,850 reactor-years). And most of the experience with fast reactors suggests they are more trouble than they are worth.

Apart from the countries mentioned above, there is very little interest in pursuing fast reactor technology. Germany, the UK and the UScancelled their prototype breeder reactor programs in the 1980s and 1990s.

France is considering building a fast reactor (ASTRID) despite the country’s unhappy experience with the Phénix and Superphénix reactors. But a decision on whether to construct ASTRID will not be made until 2019/20.

The performance of the Superphénix reactor was as dismal as Monju. Superphénix was meant to be the world’s first commercial fast reactor but in the 13 years of its miserable existence it rarely operated ‒ its ‘Energy Unavailability Factor’ was 90.8% according to the IAEA. Note that the fast reactor lobbyists complain about the intermittency of wind and solar!

A 2010 article in the Bulletin of the Atomic Scientists summarised the worldwide failure of fast reactor technology: “After six decades and the expenditure of the equivalent of about $100 billion, the promise of breeder reactors remains largely unfulfilled. … The breeder reactor dream is not dead, but it has receded far into the future. In the 1970s, breeder advocates were predicting that the world would have thousands of breeder reactors operating this decade. Today, they are predicting commercialization by approximately 2050.”

Allison MacFarlane, former chair of the US Nuclear Regulatory Commission, recently made this sarcastic assessment of fast reactor technology: “These turn out to be very expensive technologies to build. Many countries have tried over and over. What is truly impressive is that these many governments continue to fund a demonstrably failed technology.”

While fast reactors face a bleak future, the rhetoric will persist. Australian academic Barry Brook wrote a puff-piece about fast reactors for the Murdoch press in 2009. On the same day he said on his website that “although it’s not made abundantly clear in the article”, he expects conventional reactors to play the major role for the next two to three decades but chose to emphasise fast reactors “to try to hook the fresh fish”.

So that’s the nuclear lobbyists’ game plan − making overblown claims about fast reactors and other Generation IV reactor concepts, pretending that they are near-term prospects, and being less than “abundantly clear” about the truth.

Dr Jim Green is the national anti-nuclear campaigner with Friends of the Earth Australia and editor of the Nuclear Monitor newsletter published by the World Information Service on Energy.

October 5, 2016 Posted by | 2 WORLD, Reference, reprocessing | Leave a comment

China’s graphite mining communities pay heavy health toll, to supply modern technological devices

Inhaling particulate matter can cause an array of health troubles, according to health experts, including heart attacks and respiratory ailments.

But it’s not just the air. The graphite plant discharges pollutants into local waters…


IN YOUR PHONE, IN THEIR AIR  A trace of graphite is in consumer tech. In these Chinese villages, it’s everywhere.Washington Post, Story by Peter Whoriskey   Photos by Michael Robinson Chavez  Videos by Jorge Ribas   October 2, 2016 At night, the pollution around the village has an otherworldly, almost fairy-tale quality.

“The air sparkles,” said Zhang Tuling, a farmer in a village in far northeastern China. “When any bit of light hits the particles, they shine.”

By daylight, the particles are visible as a lustrous gray dust that settles on everything. It stunts the crops it blankets, begrimes laundry hung outside to dry and leaves grit on food. The village’s well water has become undrinkable, too.

Beside the family home is a plot that once grew saplings, but the trees died once the factory began operating, said Zhang’s husband, Yu Yuan.

“This is what we live with,” Zhang said, slowly waving an arm at the stumps.

Zhang and Yu live near a factory that produces graphite, a glittery substance that, while best known for filling pencils, has become an indispensable resource in the new millennium. It is an ingredient in lithium-ion batteries.

Smaller and more powerful than their predecessors, lithium batteries power smartphones and laptop computers and appear destined to become even more essential as companies make much larger ones to power electric cars.

The companies making those products promote the bright futuristic possibilities of the “clean” technology. But virtually all such batteries use graphite, and its cheap production in China, often under lax environmental controls, produces old-fashioned industrial pollution.

At five towns in two provinces of China, Washington Post journalists heard the same story from villagers living near graphite companies: sparkling night air, damaged crops, homes and belongings covered in soot, polluted drinking water — and government officials inclined to look the other way to benefit a major employer.

After leaving these Chinese mines and refiners, much of the graphite is sold to Samsung SDI, LG Chem and Panasonic — the three largest manufacturers of lithium-ion batteries. Those companies supply batteries to major consumer companies such as Samsung, LG, General Motors and Toyota.

Apple products use batteries made by those companies, too Continue reading

October 5, 2016 Posted by | China, environment, health, Reference | Leave a comment