nuclear-news

The News That Matters about the Nuclear Industry

Hibakusha were not treated for radiation damage: finally Radiation research foundation to apologize

Radiation research foundation to apologize for studying but not treating hibakusha https://mainichi.jp/english/articles/20170617/p2a/00m/0na/016000c  June 17, 2017 (Mainichi Japan)HIROSHIMA –– The chairman of a joint Japan-U.S. research organization studying the long-term effects of radiation exposure on humans is expected to apologize to hibakusha — survivors of the 1945 U.S. atomic bombings of Hiroshima and Nagasaki — who were studied but generally not treated by the organization’s American predecessor, it has been learned.

June 19, 2017 Posted by | Japan, radiation, weapons and war | Leave a comment

US federal cutbacks mean closure of  Manhattan Radiation-Detection Lab

 Manhattan Radiation-Detection Lab To Close Due to Federal Budget Cut, The Chief ,By BOB HENNELL, Jun 16, 2017 The Department of Homeland Security will be closing its city-based National Urban Security Technology Laboratory which services the NYPD and the FDNY radiation-detection equipment used to detect an improvised nuclear device or a so-called dirty bomb, THE CHIEF-LEADER has learned. In addition to providing technical support to the city’s first-responders, the lab, under the post-9/11 Securing the Cities program, provides similar assistance to the Port Authority of New York and New Jersey as well as local departments across the region.

Casualty of Trump Budget

In a letter obtained by this newspaper dated June 1, Adam R. Hutter, the NUSTL’s director, wrote to the lab’s Securing the Cities partners that to satisfy cuts required by President Trump’s proposed budget for the Federal fiscal year that begins Oct. 1 the DHS will close the facility that helps “to detect and protect against radiological and nuclear threats by conducting functional tests of law enforcement radiation detection equipment for Securing the Cities (STC), through an agreement with the New York City Police Department.”

 The lab at 201 Varick St. in lower Manhattan was established in 1947 as part of the Manhattan Project and has been a global leader in studying background atmospheric radiation. It provided critical scientific research that helped make the case for the 1963 Limited Nuclear Test Ban Treaty between the U.S. and the U.S.S.R. which banned testing on atomic bombs in the atmosphere, underwater or in outer space.

“NUSTL is honored to have tested nearly 20,000 units in support of the homeland security enterprise,” Mr. Hutter wrote. “Please be assured that we will continue to provide you with testing and support services until NUSTL’s closure is finalized.”

Union VP ‘Stunned’

“We were stunned,” said John Kada, who works at the lab and is the vice president of Local 42 of the American Federation of Government Employees. “Over the years we have built really good relations with first-responders throughout the region. We have one-on-one relations that grew out of our calibrating their equipment and providing the latest in training materials in this critical area.”…..http://thechiefleader.com/manhattan-radiation-detection-lab-to-close-due-to-federal-budget/article_9fa74bf6-3b11-11e7-b2ad-931dab76e901.html

June 19, 2017 Posted by | radiation, USA | Leave a comment

Ship at Bangladesh found to have illegal levels of radioactive material: too dangerous to scrap

High level radioactivity detected on North Sea Producer, report says https://www.energyvoice.com/oilandgas/142087/high-level-radioactivity-detected-north-sea-producer-report-says/Written by Reporter  14 June 17 Illegal levels of radioactive material have been detected on the North Sea Producer vessel, which was to be scrapped on a beach in Bangladesh, a news report said.

Work to dismantle the North Sea Producer started in October, but the process was halted in November amid fears that the ship may still contain hazardous substances.

An inspection has since confirmed the presence of unsafe levels of radioactivity, and the Supreme Court has ordered environmental agencies to explain why they gave permission for the vessel to be scrapped at Chittagong, according to independent media research centre Danwatch.

The vessel, which was docked near Middlesbrough FC’s Riverside Stadium early in 2016, had been expected to sail to Nigeria.

But in October it emerged that the North Sea Producer, originally owned by Maersk, had been taken to Bangladesh instead.

Workers on the beach yards of Bangladesh lack basic safety equipment and routinely work in flip-flops and shorts. – 15/06/2017

June 16, 2017 Posted by | ASIA, radiation | Leave a comment

Accidential exposure to Plutonium: what this means for Japanese nuclear workers

Increase in Cancer Risk for Japanese Workers Accidentally Exposed to Plutonium http://allthingsnuclear.org/elyman/cancer-risk-for-japanese-exposed-to-plutonium#.WTxxNdgMNK8.twitter, ED LYMAN, SENIOR SCIENTIST | JUNE 9, 2017, 

 According to news reports, five workers were accidentally exposed to high levels of radiation at the Oarai nuclear research and development center in Tokai-mura, Japan on June 6th. The Japan Atomic Energy Agency, the operator of the facility, reported that five workers inhaled plutonium and americium that was released from a storage container that the workers had opened. The radioactive materials were contained in two plastic bags, but they had apparently ripped.

We wish to express our sympathy for the victims of this accident.

This incident is a reminder of the extremely hazardous nature of these materials, especially when they are inhaled, and illustrates why they require such stringent procedures when they are stored and processed.

According to the earliest reports, it was estimated that one worker had inhaled 22,000 becquerels (Bq) of plutonium-239, and 220 Bq of americium-241. (One becquerel of a radioactive substance undergoes one radioactive decay per second.) The others inhaled between 2,200 and 14,000 Bq of plutonium-239 and quantities of americium-241 similar to that of the first worker.

More recent reports have stated that the amount of plutonium inhaled by the most highly exposed worker is now estimated to be 360,000 Bq, and that the 22,000 Bq measurement in the lungs was made 10 hours after the event occurred. Apparently, the plutonium that remains in the body decreases rapidly during the first hours after exposure, as a fraction of the quantity initially inhaled is expelled through respiration. But there are large uncertainties.

The mass equivalent of 360,000 Bq of Pu-239 is about 150 micrograms. It is commonly heard that plutonium is so radiotoxic that inhaling only one microgram will cause cancer with essentially one hundred percent certainty. This is not far off the mark for certain isotopes of plutonium, like Pu-238, but Pu-239 decays more slowly, so it is less toxic per gram.  The actual level of harm also depends on a number of other factors. Estimating the health impacts of these exposures in the absence of more information is tricky, because those impacts depend on the exact composition of the radioactive materials, their chemical forms, and the sizes of the particles that were inhaled. Smaller particles become more deeply lodged in the lungs and are harder to clear by coughing. And more soluble compounds will dissolve more readily in the bloodstream and be transported from the lungs to other organs, resulting in exposure of more of the body to radiation. However, it is possible to make a rough estimate.

Using Department of Energy data, the inhalation of 360,000 Bq of Pu-239 would result in a whole-body radiation dose to an average adult over a 50-year period between 580 rem and nearly 4300 rem, depending on the solubility of the compounds inhaled. The material was most likely an oxide, which is relatively insoluble, corresponding to the lower bound of the estimate. But without further information on the material form, the best estimate would be around 1800 rem.

What is the health impact of such a dose? For isotopes such as plutonium-239 or americium-241, which emit relatively large, heavy charged particles known as alpha particles, there is a high likelihood that a dose of around 1000 rem will cause a fatal cancer. This is well below the radiation dose that the most highly exposed worker will receive over a 50-year period. This shows how costly a mistake can be when working with plutonium.

The workers are receiving chelation therapy to try to remove some plutonium from their bloodstream. However, the effectiveness of this therapy is limited at best, especially for insoluble forms, like oxides, that tend to be retained in the lungs.

The workers were exposed when they opened up an old storage can that held materials related to production of fuel from fast reactors. The plutonium facilities at Tokai-mura have been used to produce plutonium-uranium mixed-oxide (MOX) fuel for experimental test reactors, including the Joyo fast reactor, as well as the now-shutdown Monju fast reactor. Americium-241 was present as the result of the decay of the isotope plutonium-241.

I had the opportunity to tour some of these facilities about twenty years ago. MOX fuel fabrication at these facilities was primarily done in gloveboxes through manual means, and we were able to stand next to gloveboxes containing MOX pellets. The gloveboxes represented the only barrier between us and the plutonium they contained. In light of the incident this week, that is a sobering memory.

June 12, 2017 Posted by | - plutonium, health, Japan, radiation, Reference | Leave a comment

Legacy of improperly managed radioactive sites across Russia.

Russia’s radioactive past continues to haunt its citizens https://news.vice.com/story/russias-radioactive-past-continues-to-haunt-its-citizens  By Sara Jerving Anton Kolomitsyn has an unusual hobby: He searches the Russian countryside looking for remnants of past wars. Earlier this year, he made an unexpected find.

June 9, 2017 Posted by | environment, radiation | Leave a comment

Exposure to ionising radiation; we all got a tiny increase due to Fukushima nuclear disaster

Fukushima accident gave everyone an X-ray’s worth of radiation By Andy Coghlan, 6 May 17 https://www.newscientist.com/article/2129988-fukushima-accident-gave-everyone-an-x-rays-worth-of-radiation/

“We don’t need to worry,” says Nikolaos Evangeliou at the Norwegian Institute for Air Research, whose team has conducted the first global survey of radiation exposure caused by the meltdown of three nuclear reactors at the Fukushima-Daiichi nuclear plant in Japan after a tsunami struck in 2011.

Evangeliou’s team has calculated the approximate exposure of everyone on Earth to two radioactive isotopes of caesium, using all the data available so far. Most of this came from the Comprehensive Test Ban Treaty Organization, which monitors radiation in the environment using a global network of measuring stations.

“More than 80 per cent of the radiation was deposited in the ocean and poles, so I think the global population got the least exposure,” Evangeliou told the annual meeting of the European Geosciences Union in Vienna, Austria, last month. He has estimated the dose that most individuals received to be 0.1 millisievert. “What I found was that we got one extra X-ray each,” says Evangeliou.

 Impact on wildlife

Even in Japan, the average person’s radiation dose was low: 0.5 millisieverts, which is close to the annual recommended limit for breathing in naturally occurring radon gas. In comparison, the average annual exposure from background levels of radiation in the UK is around 2.7 millisieverts a year.

Doses were unsurprisingly higher for residents of Fukushima and neighbouring areas during the first three months of the accident, ranging from 1 to 5 millisieverts. But such doses are still relatively low – a typical CT scan delivers 15 millisieverts, for example, while it takes 1000 millisieverts to cause radiation sickness.

But Evangeliou says that the effects on wildlife around the plant might be more severe. Already, he says, increased levels of radiation around Fukushima have been linked to declines in bird populations there between 2011 and 2014. “There have also been reports of declines in other species such as insects and some mammals,” he says.

However overall, Evangeliou says the hazards posed by fallout from the Chernobyl nuclear accident in Ukraine in 1986 are still much greater than those from Fukushima, because the fallout was larger, and it fell upon more densely populated areas.

May 8, 2017 Posted by | 2 WORLD, radiation | Leave a comment

Time to pay attention to long term effects of low dose ionising radiation

The numbers of cases rose into the thousands, too high to dismiss, and in 1996 the WHO and the IAEA finally admitted that skyrocketing rates of childhood thyroid cancer were most likely due to Chernobyl exposures.

Today we know little about the non-cancerous effects that Soviet scientists working in contaminated zones reported in the late 1980s, and which they attributed to internal and external exposures to ionizing radiation. Are these effects as real as the childhood thyroid cancers proved to be? The Soviet post-Chernobyl medical records suggest that it is time to ask a new set of questions about long-term, low-dose exposures.

Chernobyl’s hidden legacy http://live.iop-pp01.agh.sleek.net/physicsworld/reader/#!edition/editions_Nuclear_2017/article/page-19330 Kate
Brown
 is a historian at the University of Maryland, Baltimore County, US, e-mail kbrown@umbc.edu
 Historian Kate Brown argues that scientists should re-examine Soviet-era evidence of health effects from low doses of radiation

In June 1980 a doctor with the Oak Ridge Associated Universities in the US wrote a letter to a colleague at the Knolls Atomic Power Laboratory in upstate New York. The pair were corresponding about a forthcoming study of employee health at the Knolls reactor, and the doctor, C C Lushbaugh, wrote that he expected “little ‘useful’ knowledge” from this study “because radiation doses have been so low”. Even so, he agreed that the study had to be done because “both the workers and their management need to be assured that a career involving exposures to low levels of nuclear radiation is not hazardous to one’s health”. The results of such a study, he surmised, would help to counter anti-nuclear propaganda and resolve workers’ claims. However, they could also be a liability. If a competing union or regulatory agency got hold of the employees’ health data, Lushbaugh fretted, it could be weaponized. “I believe,” he continued, “that a study designed to show the transgressions of management will usually succeed.”

Lushbaugh’s dilemma is characteristic of research on the human health effects of exposure to low doses of radiation. He assumed he knew the results – good or bad – before the study began, because those results depended on how the study was designed. The field was so politicized, in other words, that scientists were using health studies as polemical tools and, consequently, asking few open-ended scientific questions.

A few years after Lushbaugh posted this letter, reactor number four at the Chernobyl nuclear power plant blew up, killing 31 workers and firefighters and spreading radioactive material across a broad area of what was then the Soviet Union (now Ukraine and Belarus) and beyond. The accident also exploded the field of radiation medicine and, for a while, promised to rejuvenate it. In August 1986, months after the accident, the chief of the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), Giovanni Silini, advocated an enduring epidemiological investigation similar to research on atomic-bomb survivors in Japan [1]. Many other scientists concurred, hoping that Chernobyl could clear up ongoing controversies and uncertainties surrounding low-dose exposures.

It never happened. No long-term epidemiological study took place. That’s not to say there isn’t any information. A few summers ago I went to the Ukrainian national archives in the dusty, bustling outskirts of Kiev and asked the archivists for files on Chernobyl from Soviet Ukraine’s Ministry of Health. They laughed, telling me Chernobyl was a banned topic in the Soviet Union. “You won’t find anything,” they said.

They were wrong. I found dozens of collections labelled “The medical effects of the Chernobyl disaster”. I started reading and have not yet been able to stop.

The aftermath

In the years between 1986 and 1991, doctors and sanitation officials wrote to the Ministry of Health in Kiev with alarming accounts of widespread, chronic illness among the hundreds of thousands of children and adults living in contaminated territories. They recorded increases in tonsillitis, upper respiratory disease and disorders of the digestive tract and immune system. Between 1985 and 1988, cases of anaemia doubled. Physicians from almost every region in the zone of contamination reported a leap in the number of reproductive problems, including miscarriages, stillbirths and birth malformations. Nervous-system disorders surged. So did diseases of the circulatory system. In 1988, in the heavily contaminated Polesie region of northern Ukraine, 80% of children examined had upper respiratory diseases and 28% had endocrine problems. In Ivankiv, where many cleanup workers lived, 92% of all children examined had a chronic illness.

I also went to Minsk to check the archives in Belarus. There, I read reports that sounded eerily similar to the Ukrainian documents. These reports were classified “for office use only”, meaning that at the time, scientists were not free to exchange this information across districts or republics of the Soviet Union. Even so, independently, they were reporting similar, bad news. The problem grew so dire in Belarus that in 1990 officials declared the entire republic, which received more than 60% of Chernobyl fallout, a “zone of national ecological disaster”.

The Ukrainian and Belarusian reports, hundreds of them, read like a dirge from a post-catastrophic world. Doctors wrote from clinics in Kharkiv, far outside the contaminated zone, and described similar health problems among evacuees who had settled there. Physicians sent telegrams from Donetsk, where they were treating a complex of illnesses among young miners who had burrowed under the smouldering reactor in the days after the accident. Medical workers sent in to examine people in contaminated regions also fell ill.

In response, the Union of Soviet Radiologists penned a petition to alert Soviet leaders of the ongoing public health disaster. The president of the Belarusian Academy of Science sent a detailed summary of scientists’ findings to Minsk and Moscow. Even a KGB general, Mikhailo Zakharash, sounded the alarm. Zakharash, who was also a medical doctor, conducted a study of 2000 cleanup workers and their family members in a specially equipped KGB clinic in Kiev. In 1990, summing up four years of medical investigation, he wrote, “We have shown that long term, internal exposures of low doses of radiation to a practically healthy individual leads to a decline of his immune system and to a whole series of pathological illnesses.”

Chronic radiation

These findings track with what Soviet doctors had long described as chronic radiation syndrome, a complex of symptoms derived from chronic exposure to low doses of radiation. Researchers working on Chernobyl discerned a pattern of disease that tracked with pathways of radioactive isotopes entering the body, paths that began in either the mouth and headed towards the gastrointestinal tract or started in the lungs and followed blood into circulatory systems. Radioactive iodine sped to thyroids, they hypothesized, causing endocrinal and hormonal damage.

Critics, mostly in Moscow and the ministries of health, acknowledged the growth in health problems, but denied a connection to Chernobyl. A E Romanenko, the Ukrainian Minister of Health, is credited with inventing the word “radiophobia” to describe a public fear of radiation that induced stress-related illness. He and his colleagues also pointed to a screening effect from mass medical monitoring. Local doctors, they said, were projecting the diagnoses of chronic radiation syndrome onto their patients, blaming it for any illness found after Chernobyl.

There are some problems with these arguments. From 1986 to 1989, Chernobyl was a censored topic in the Soviet Union. Doctors could not exchange information about health problems, nor did they have access to maps of radioactive contamination. They only learned to be “radiophobic” by judging the bodies they examined. In the same years, doctors were also fleeing contaminated areas en masse, leaving hospitals and clinics in those regions staffed at 60%. As physicians left, so too did the chance for diagnosis, meaning that under-reporting of illnesses was more likely than a screening effect. Moreover, doctors from the northern regions of the Rivne province, which were at first judged clean and only in late 1989 designated contaminated, reported the same growth of illness as areas originally deemed “control zones,” regions with counts of more than 5 curies per square kilometre. The president of the Belarusian Academy of Science, V P Platonov, pointed to a vacuum of knowledge: “Until this time, no population has ever lived with continual internal and external exposures of this size.” Risk assessments assuring safe levels in the contaminated zones were extrapolated from the Japanese Atomic Bomb Survivor Lifespan Study, but these began only in 1950, five years after exposure. “Much is uncertain,” Platonov continued, “about fundamental aspects of the effects of low doses of radiation on human organs,” [2].

What happened to the 1980s Chernobyl health studies, which might have led to a renaissance in the field of radioecology? Essentially, they were overlooked. To figure out why, I went to the headquarters of the World Health Organization (WHO) in Geneva, to the UN’s archives in New York and the archives of UNSCEAR in Vienna. There, I found evidence of a conflict between branches of the WHO and the International Atomic Energy Agency (IAEA) over which organization would control the studies of Chernobyl health effects.

By 1989 angry crowds were questioning the Soviet Union’s handling of Chernobyl, and Soviet leaders asked foreign experts for help in assessing the disaster’s health impacts. The IAEA agreed, and Fred Mettler, a radiologist and American delegate to UNSCEAR, was appointed to head the medical section of an IAEA team. In 1990, as he and his team examined 1726 people in six contaminated zones and six control zones, Soviet doctors gave him 20 slides from children diagnosed with thyroid cancer. Thyroid cancer is very rare in children: before the Chernobyl accident, doctors saw eight or nine cases per year in all of Ukraine. Twenty cases in just three provinces was hard to believe. Dubious, Mettler brought the slides to the US to have them verified. They indeed indicated thyroid cancer.

Cancer cluster

Mettler mentioned this major medical finding in the 1991 International Chernobyl Project (ICP) technical report, but strangely, he also stated that there was “no clear pathologically documented evidence of an increase in thyroid cancer” [3]. The report concluded that there were no detectable Chernobyl health effects and only a probable chance of childhood thyroid cancers in the future. In a 1992 publication on thyroid nodules in the Chernobyl territories, Mettler failed to mention the 20 verified cases at all [4].

How could such a lapse occur? I found a confidential 1990 UN memo that seems relevant, particularly in light of the study-design problem set out in Lushbaugh’s letter a decade earlier. The memo suggests that the IAEA was conducting the ICP study to “allay the fears of the public” in service of “its own institutional interest for the promotion of peaceful uses of nuclear energy” [5]. The experiences of Keith Baverstock, then head of the radiation protection programme in the WHO’s European office, likewise reveal an institutional aversion to bad news. In July 1992 Baverstock planned to go to Minsk to examine childhood thyroid cases in Belarus, where doctors reported an astounding 102 new cases. At the last minute, officials from the WHO and the Commission of European Communities inexplicably pulled out of the mission. In an interview with me, Baverstock, an expert on the effects of ionizing radiation, said that a WHO official told him he could get fired if he went to Minsk.

He went anyway. With Belarusian scientists, he published news of the thyroid cancer epidemic in Nature. A top IAEA official complained angrily to the WHO, and the two agencies put pressure on Baverstock to retract his article. He refused, and a barrage of letters followed in Nature disputing the connection between the cancers and Chernobyl exposures [6]. Leading scientists from the US Department of Energy, the National Cancer Institute, Japan’s Radiation Effects Research Foundation and the IAEA argued that cancers were found because of increased surveillance. They called for a suspension of judgment and for further study. Repetitive and dismissive, their letters read like an orchestrated pile-on.

We now know that these global leaders in radiology were wrong. The numbers of cases rose into the thousands, too high to dismiss, and in 1996 the WHO and the IAEA finally admitted that skyrocketing rates of childhood thyroid cancer were most likely due to Chernobyl exposures. Today, the UNSCEAR maintains that the health consequences of the Chernobyl accident are limited to 31 direct fatalities – plus 6000 cases of children’s thyroid cancer [7].

Lingering questions

The question is – so what? Despite the 1991 ICP report’s erroneous claim of no health effects, UN agencies eventually recognized the cancer epidemic. What difference did a few years make? A great deal, it turns out. The ICP report also recommended that resettlements from the most contaminated regions should cease [8]. Consequently, the planned resettlement of 200,000 people living in areas contaminated with high levels of radiation (between 15 and 40 curies per square kilometre) slowed tremendously. The UN General Assembly had also been waiting for the report before raising funds for Chernobyl relief. The $646m budget (equivalent to about $1.1bn today) included medical aid, resettlement funds and a large-scale epidemiological study of Chernobyl health effects. The assertion by important UN agencies that there were no detectable health effects deflated that effort. Before the report, Japan had given $20m to the WHO, but afterwards it gave no more and complained about the funds being wasted. A few other countries gave sums totalling less than $1m, while the US and the European Community begged off entirely, citing the ICP report as a “factor in their reluctance to pledge” [9].

In subsequent years, IAEA and UNSCEAR officials cited the ICP report when discouraging Chernobyl-related health projects. In 1993 UNSCEAR scientific secretary Burton Bennett recommended that UN agencies suspend all programmes aimed at Chernobyl relief because they were unnecessary. He and IAEA administrator Abel Gonzalez, who led the ICP assessment, widely shared their views among UN agencies about “misinformation surrounding the Chernobyl accident” [10]. When the WHO, nonetheless, started a pilot study on Chernobyl health effects, Gonzalez wrote that he could not imagine what the WHO “expects to be able to detect for the level of doses in question”. Irked that WHO officials would examine any effects but psychological ones, he charged, “The World Health Organization seems to ignore, expressly or tacitly, the conclusions and recommendations of the International Chernobyl Project,” [11].The consequences of this moment of deviant science continue 30 years later. Today we know little about the non-cancerous effects that Soviet scientists working in contaminated zones reported in the late 1980s, and which they attributed to internal and external exposures to ionizing radiation. Are these effects as real as the childhood thyroid cancers proved to be? The Soviet post-Chernobyl medical records suggest that it is time to ask a new set of questions about long-term, low-dose exposures.

References

  1. Giovanni Silini 1986 “Concerning proposed draft for long-term Chernobyl studies” Correspondence Files, UNSCEAR Archive
  2. V P Platonov and E F Konoplia 1989 “Informatsiia ob osnovynkh rezul’tatakh nauchnykh rabot, sviazannykh s likvidatsiei posledstvii avarii na ChAES” RGAE 4372/67/9743: 490
  3. International Chernobyl Project, Proceedings of an International Conference (Vienna: IAEA 1991): 47. Mettler also admitted that the slides checked out at the Vienna conference convened to discuss the report. For a discussion of thyroid cancer, see The International Chernobyl Project, Technical Report, Assessment of Radiological Consequences and Evaluation of Protective Measures (Vienna: IAEA 1991): 388
  4. Fred Mettler et al. 1992 “Thyroid nodules in population around Chernobyl” Journal of American Medical Association 268 616
  5. From Enrique ter Horst, Asst Sec Gen, ODG/DIEC to Virendra Daya, Chef de Cabinet, EOSG, 16 April 1990, United Nations Archive, New York S-1046 box 14, file 4, acc. 2001/0001
  6. Baverstock et al. 1992 “Thyroid cancer after Chernobyl” Nature 359 21; Kazakov et al. 1992 “Thyroid cancer after Chernobyl” Nature 359 21; I Shigematsu and J W Thiessen 1992 “Childhood thyroid cancer in Belarus” Nature 359 680; V Beral and G Reeves 1992 “Childhood thyroid cancer in Belarus” Nature 359 680; E Ron, J Lubin, A B Scheider 1992 “Thyroid cancer incidence” Nature 360 113
  7. The Chernobyl accident: UNSCEAR’s assessments of the radiation effects” UNSCEAR website
  8. The International Chernobyl Project: an Overview (Vienna: IAEA 1991): 44
  9. “International co-operation in the elimination of the consequences of the Chernobyl Nuclear Power Plant accident” 24 May 1990, UNA S-1046/14/4; “Third meeting of the Inter-Agency Task Force on Chernobyl” 19–23 September 1991, WHO E16-445-11, 5; “Briefing note on the activities relating to Chernobyl” 3 June 1993, Department of Humanitarian Affairs DHA, UNA s-1082/35/6/, acc 2002/0207; Anstee to Napalkov, 17 Jan 1992, WHO E16-445-11, 7
  10. Gonzalez to Napalkov, 10 August 1993, WHO E16-445-11, 19; B G Bennett 1993 “Background information for UNEP representative to the meeting of the Ministerial Committee for Coordination on Chernobyl” 17 November 1993, New York, Correspondence Files, UNSCEAR Archive, Vienna
  11. Gonzalez to Napalkov, 10 August 1993, WHO E16-445-11, 19

April 26, 2017 Posted by | 2 WORLD, radiation, Reference, Ukraine | Leave a comment

Anomalies in wildlife and the ecosystem around Chernobyl and Fukushima

 

Dr. Timothy Mousseau, Professor of Biological Sciences, University of South Carolina. Mousseau discussed his many studies on the health impacts on wildlife and biota around Chernobyl and Fukushima which soundly debunk the notion that animals there are “thriving.”

April 9, 2017 Posted by | radiation | , , , , , | Leave a comment

Woods Hole Oceanographic Institution continues to monitor Pacific Ocean fish for radiation

 

Why is this headline so melodramatic, when the content of this article is quite restrained?

 

Fukushima nuke radiation POISONING world’s water – including FISH Brits eat, Daily Star UK 29 Mar 17 BRITS could be eating salmon and tuna containing nuclear radiation from the Fukushima disaster according to a study. Salmon caught in the Pacific Ocean, which are imported for sale as a luxury product in UK shops, were found to contain worrying amounts of radiation.

Highly toxic Cesium-134, the nuclear fallout from Fukushima, was recently found in Tillamook Bay and Gold Beach, in the US state of Oregon. The terrifying discovery was reported by researchers at the Woods Hole Oceanographic Institution.Cesium-134 was also detected in 2015 in Canada when a salmon pulled from a river in British Columbia was found to contain radiation….

….Japanese fish have tested positive for dangerous levels of radiation and now, it seems, fish as far away as the US have been infected by the waste.

Alaskan Salmon is imported for sale in most major UK supermarkets when Scottish salmon is out of season. After being caught in the Pacific, these fish then make a 22,000 mile journey via China to supermarket shelves here in Britain.

A statement on the Woods Hole Oceanographic Institution website said: “For the general public, it is not direct exposure, but uptake by the food web and consumption of contaminated fish that is the main health concern from the oceans.

“Most fish do not migrate far from their spawning grounds, which is why some fisheries off Fukushima remain closed.

“But some species, such as the Pacific bluefin tuna, swim long distances and could pick up cesium in their feeding grounds off Japan before crossing the Pacific.” Ken Buesseler, a senior scientist at the institution, said that the levels of radiation should not affect anyone eating the salmon, but admitted that he would be closely monitoring radiation levels.

“We don’t expect to see health concerns from swimming or fish consumption, but we would like to continue monitoring until (the radiation level) goes back down again,” he said.

“In Japan, at its peak celsium-134 levels were 10 million times higher than what we are seeing today on the West Coast.”

The Alaska Department of Environmental Conservations (DEC), in conjunction with the Alaska Department of Health and Social Services and other state, federal, and international agencies, continues to test Alaska seafood for any potential impacts resulting from the 2011 Fukushima nuclear disaster in Japan.

Testing performed in previous years showed no detectable levels of Fukushima-related radionuclides. Testing in 2016 also confirmed the quality and health of Alaska seafood has not been impacted by the Fukushima nuclear disaster.

Fish species were chosen for testing based on their importance to subsistence, sport, and commercial fisheries and because they spend part of their life cycle in the western Pacific Ocean.

These species include: king salmon, chum salmon, sockeye (red) salmon, pink salmon, halibut, pollock, sablefish, herring, and Pacific cod. Samples of fish were taken by DEC Environmental Health Officers during regular inspections of commercial fishing processors throughout the state.

The results of testing conducted on Alaska fish in 2016 showed no detection of Fukushima-related radionuclides Iodine-131 (I-131), Cesium-134 (Cs-134), and Cesium-137 (Cs-137). more http://www.dailystar.co.uk/news/latest-news/600099/Fukushima-radiation-nuclear-waste-poisoning-world-water-fish-Brit-eat-supermarket

March 31, 2017 Posted by | oceans, radiation | Leave a comment

At Svanhovd, Norway, another tiny measurement of radioactive iodine – ongoing release?

Another tiny measurement of radioactive iodine at Svanhovd https://thebarentsobserver.com/en/ecology/2017/03/another-tiny-measurement-radioactive-iodine-svanhovd
Norwegian Radiation Protection Authorities (NRPA) without any suspected source. 
Thomas Nilsen March 23, 2017

The very small amount of radioactive iodine was measured in week 10, between March 6 to 13, by the authorities’ instruments at Svanhovd, a few hundred meters from Norway’s border to the Kola Peninsula in the north.

«We measured 0,35 microbecquerels of iodine-131. We didn’t detected any other radioactive isotopes,» says Head of section for emergency preparedness with NRPA, Astrid Liland, in an e-mail to the Barents Observer.

The radiation authorities says no other measurements of iodine are found anywhere else in Norway for the period.

NRPA underlines that no radiation is measured at Svalbard where the measurement filters are connected to the CTBTO network with the purpose of monitoring the nuclear test ban treaty.

This is the second time this winter that radioactive iodine is measured at Svanhovd. Following the traces measured in January, a series of tweets started to spread claiming the source to be a possible Russian nuclear weapon test at Novaya Zemlya. No other evidence supported such weapon test.

Ongoing release?

Nuclear physicist with the Bellona Foundation, Nils Bøhmer, says this second period of measurement indicates that there are some kind of ongoing releases.

«If it is iodine-131, it is serious because that likely means a continuing release still going on. Iodine-131 has a half-life of only 8 days, so what was measured in January are long gone,» Bøhmer says to the Barents Observer.

A possible ongoing release is supported by measurements in Finland a week before the trace was detected in Norway’s northeasternmost corner.

In late February, the Radiation and Nuclear Safety Authority of Finland detected radioactive Iodine-131 in Rovaniemi. Levels were at 0,3 microbecquerels per cubic meter of air. Norwegians have not reported any traces of the isotope for that period. The January trace of radioactive Iodine-131, still of unknown origin, was first detected at Svanhovd near Kirkenes in northern Norway. Shortly afterwards, the isotope was detected over large areas in Europe, first in Rovaniemi in Finnish Lapland. Within the next two weeks, traces of radioactivity, although in tiny amounts, were measured in Poland, Czech Republic, Germany, France and Spain, the Barents Observer reported.

March 24, 2017 Posted by | environment, EUROPE, radiation | Leave a comment

Why milk is nature’s perfect radioactivity delivery system

radiation-emanatingWhat’s up with milk and radiation? , Connect Savannah, 14 Sept 2011, 

1. It’s a food. While an external dusting of radionuclides isn’t healthy, for efficient long-term irradiation of vulnerable organs there’s no substitute for actually ingesting the stuff.

2. It’s fast. Not to knock potatoes and chicken, but growing these items can take weeks or months. With milk, the fallout simply drifts over the pasture and lands on the grass, which the cows then eat. The radioactive particles are deposited in the cows’ milk, the farmers milk the cows, and in a day or two the contaminated product shows up in the dairy case.

3. Because it’s processed quickly, milk makes effective use of contaminants that would otherwise rapidly decay. A byproduct of uranium fission is the radioactive isotope iodine-131. Iodine is critical to functioning of the thyroid gland, and any iodine-131 consumed will be concentrated there. However, iodine-131 has a half-life of just eight days. The speed of dairying eliminates this impediment.

4. Milk also does a good job of delivering other radioactive contaminants, such as cesium-134 and cesium-137. Although not important for human health, radioactive cesium mimics potassium, which we do need, and is readily absorbed by the body. Another uranium breakdown product is strontium-90, which is especially hazardous to children, since it can be incorporated into growing bones. In contrast to radioactive iodine, strontium-90 has a half-life of about 29 years, so once it gets embedded in you, you are, as the Irish say, fooked.

5. That brings us to the most fiendish property of radioactive milk-it targets the young. Children (a) drink a lot more milk and (b) are smaller, which when you add it up means they get a much stiffer dose. Some cancers triggered by radioactivity have a long latency period; older people may die of something else first, but kids bear the full brunt.

For all these reasons, testing milk and dumping any contaminated is at the top of the list of disaster-response measures following a nuclear accident, and it’s unusual, though not unknown, for bad milk to find its way into the food supply. For example:

• Iodine contamination during the 1979 Three Mile Island accident was negligible, 20 picocuries per liter. The FDA’s “action level” at the time was 12,000 picocuries per liter; the current limit of 4,600 picocuries is still far in excess of what was observed.

• After the problems with the Fukushima reactors in Japan, one batch of hot milk did test at nine times the current limit, and milk and vegetable consumption was prohibited in high-risk areas. But most bans were rescinded after a couple months.

• In 1957, after a fire at the Windscale plutonium processing plant in the UK, radiation levels of 800,000 picocuries per liter and higher were found in local milk. Though contamination of milk wasn’t well understood at the time, authorities figured 800,000 of anything involving curies can’t be good and banned the stuff.

• Then there’s Chernobyl. Milk sales were banned in nearby cities after the 1986 reactor explosion, but feckless Soviet officials let the sizable rural population fend for itself. Not surprisingly, 6,000 cases of thyroid cancer subsequently developed, proving there’s no catastrophic situation that stupidity can’t make worse.

One last thing. We’ve been talking about cow’s milk, but be aware that iodine-131, strontium-90, and other radioactive contaminants can also be transferred through human milk…..http://www.connectsavannah.com/savannah/whats-up-with-milk-and-radiation/Content?oid=2135647

March 4, 2017 Posted by | radiation, Reference | Leave a comment

Radiation ‘sniffer plane’ over Europe

questionA radiation ‘sniffer plane’ is reportedly searching for the source of a cloud of nuclear isotopes floating across Europe, news.com.au FEBRUARY 23, 2017 A CLOUD of radioactive particles is floating across Europe — and no one knows where it came from.  First detected in mid-January, spikes in the level of a radioactive isotope called Iodine-131, have been recorded all the way from Norway to Spain.

February 25, 2017 Posted by | environment, EUROPE, radiation | Leave a comment

‘The cancer rates have surged enormously due to high levels of radiation’

 

By Christopher Busby

The US Nuclear Regulatory Commission has killed a study aimed at finding out whether nuclear reactors pose cancer risks to nearby residents. According to the Los Angeles Daily News, the decision was made due to the high cost of the probe and doubts that it would prove effective. The project in question, which is worth eight million dollars, would have examined seven nuclear facilities all across the country. The new investigation was supposed to have reassured Americans that it was not dangerous healthwise to reside near a nuclear power plant. A similar study, coming to the same conclusion, was last conducted almost 30 years ago. Several recent European tests revealed rather disturbing links between cancer and minors living close to nuclear facilities. Radio Sputnik discussed the issue with Christopher Busby, British scientist known for his theories about the negative health effects of very low-dose ionising radiation. Mr. Busby is a director of Green Audit Limited and scientific advisor to the Low Level Radiation Campaign.

https://soundcloud.com/radiosputnik/the-cancer-rates-have-surged-enormously-due-to-high-levels-of-radiation-christopher-busby

February 9, 2017 Posted by | radiation | , , | Leave a comment

Genetic radiation risks: a neglected topic in the low dose debate.

Abstract

Objectives

To investigate the accuracy and scientific validity of the current very low risk factor for hereditary diseases in humans following exposures to ionizing radiation adopted by the United Nations Scientific Committee on the Effects of Atomic Radiation and the International Commission on Radiological Protection. The value is based on experiments on mice due to reportedly absent effects in the Japanese atomic bomb (Abomb) survivors.

Methods

To review the published evidence for heritable effects after ionising radiation exposures particularly, but not restricted to, populations exposed to contamination from the Chernobyl accident and from atmospheric nuclear test fallout. To make a compilation of findings about early deaths, congenital malformations, Down’s syndrome, cancer and other genetic effects observed in humans after the exposure of the parents. To also examine more closely the evidence from the Japanese A-bomb epidemiology and discuss its scientific validity.

Results

Nearly all types of hereditary defects were found at doses as low as one to 10 mSv. We discuss the clash between the current risk model and these observations on the basis of biological mechanism and assumptions about linear relationships between dose and effect in neonatal and foetal epidemiology. The evidence supports a dose response relationship which is non-linear and is either biphasic or supralinear (hogs-back) and largely either saturates or falls above 10 mSv.

Conclusions

We conclude that the current risk model for heritable effects of radiation is unsafe. The dose response relationship is non-linear with the greatest effects at the lowest doses. Using Chernobyl data we derive an excess relative risk for all malformations of 1.0 per 10 mSv cumulative dose. The safety of the Japanese A-bomb epidemiology is argued to be both scientifically and philosophically questionable owing to errors in the choice of control groups, omission of internal exposure effects and assumptions about linear dose response.

Keywords: Congenital malformation, Down´s syndrome, Environmental radioactivity, Internal radiation, Low level effects, Sex-ratio, Still birth

Introduction

The most serious effects of ionizing radiation–hereditary defects in the descendants of exposed parents–had been already detected in the 1920s by Herman Joseph Muller. He exposed fruit flies–drosophila–to X-rays and found malformations and other disorders in the following generations. He concluded from his investigations that low dose exposure, and therefore even natural background radiation, is mutagenic and there is no harmless dose range for heritable effects or for cancer induction. His work was honoured by the Nobel Prize for medicine in 1946. In the 1950s Muller warned about the effects on the human genetic pool caused by the production of low level radioactive contamination from atmospheric tests [1].

The International Commission on Radiological Protection (ICRP) recently decreased its risk estimate for heritable damage in 2007 [2,3]. Its Detriment Adjusted Nominal Risk Coefficient for radiation heritable effects in an exposed population was reduced from the previous 1990 value of 1.3% Sv-1 to 0.2% Sv-1 a greater than 6-fold reduction. The ICRP approach is based on a linear relation between dose and end-point, measured as heritable disease at or before birth. Evidence and arguments which we will present suggest that this linear assumption is invalid and that the ICRP value is unsafe when applied to the chronic low dose internal exposure range.

The belief that heritable consequences of radiation were negligible followed from studies of the Japanese survivors of the atomic bomb (A-bomb) explosions in Hiroshima and Nagasaki in 1945. The American-Japanese Institute in Hiroshima, Atomic Bomb Casualty Commission (ABCC), did not apparently find mutations in the descendants of the survivors. Therefore the ICRP derive its current risk figure from experiments in mice. The result corresponds to the evaluation by the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR committee) [4].

We will show that the current model for genetic effects of exposure is unsound and we present a more realistic one based on data. We will begin by pointing to some serious problems with the ABCC studies of genetic effects in the A-bomb survivors. These may be classed under four Error Types.

Type 1. The dose response problem. For genetic damage, increasing dose will not linearly increase effects since at high doses there will be sterility or fetal loss [5].

Type 2. The external/internal problem. The dose of interest is the energy delivered to the germ cells and their precursors. This may be much higher for internal radionuclides with affinity for DNA (strontium-90 [Sr-90], barium-140, uranium) [6].

Type 3. The philosophical method problem. If data is interpreted though a particular scientific model, evidence which cannot fit the model will be ignored, dismissed or invisible [7,8].

Type 4. Bias in the analysis of or presentation of data from the ABCC results. There have been a number of serious criticisms of the ABCC and later studies of cancer effects. The genetic studies were criticised by De Bellefeuille [9] who demonstrated the existence of significant genetic effects including sex-ratio and malformations which had been “lost” through the choice of analysis. However, De Bellefeuille’s observations were ignored by the risk agencies. The issue will be returned to in the discussion section.

Together these raise major doubts over the belief, expressed in ICRP103, Appendix B.2.01 [2], that “Radiation induced heritable disease has not been demonstrated in human populations.”

Effects in populations exposed to Chernobyl fallout are excluded by the official committees, which claim that doses are too low to generate statistically observable increases (the philosophical method problem: Error Type 3). This, however, is certainly wrong, because we know from many studies of chromosome aberrations, either that the doses calculated by UNSCEAR are much too low or that there is an enhanced radiobiological effectiveness (RBE) in the type of internal exposures or chronic delivery received by the Chernobyl groups. In other words, the biological or genetic damage from unit internal dose e.g., from a radioactive atom bound to DNA is far greater than for the same dose delivered externally. This is Error Type 2: internal/external problem. The doses upon which the ICRP risks are based, either from humans or mice, are external doses. There are significant issues regarding the equivalence for causing genetic damage of internal and external dose calculations [6]. Internal exposure to uranium by inhalation, for example, has been associated with significantly high genotoxicity resulting in anomalously high excess levels of chromosome damage and birth defects in a number of different groups [10]. Uranium binds to DNA, a fact that has been known since the 1960s [1113]. Other group II calcium mimics and DNA seekers include the nuclide Sr-90 which causes significant genetic effects [1417]. All epidemiological studies of radiation and health which define risk factors have been subject of this Error Type 2: external/internal problem, and have generally also defined risk in terms of cumulative integrated equivalent dose, and so real effects have been ignored or dismissed, the Error Type 3: philosophical problem.

Findings in Children Born After the Chernobyl Accident and in Kazakhstan

We previously published findings about fetal deaths, perinatal mortality and congenital malformations (CM) after Chernobyl [18]. Table 1 shows results for CM after Chernobyl. These appeared not only in the area of the exploded reactor but also in Turkey, Bulgaria, Croatia, and Germany. Our criteria for inclusion of this evidence was originally to present only observations which disagreed with the current ICRP/UNSCEAR paradigm but following questions by a reviewer we include discussion of one of the few studies with contemporary data which claims to have shown that there were no measurable heritable effects [19].

Table 1. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4870760/table/t1-eht-31-e2016001/

Increase of congenital malformations after exposure by the Chernobyl accident

The EUROCAT Europe-wide Study

The study of Dolk and Nichols [19] is widely cited as evidence for no effect. The authors examined Down’s syndrome, neural tube defects (NTD), microcephaly, hydrocephaly, anopthalmos and congenital cataract in 16 EUROCAT registers. There were 231401 births in the areas in 1986. The 16 registries were divided into three groups of high (200 to 800 μSv), medium (97 to 190 μSv) and low (29 to 55 μSv). Three comparison cohort periods were defined as E (conception May 1986), T (conception May 1986 to April 1987 contains E), and C (control: conception May 1987 to April 1989). Authors concluded “no evidence of a generalised detectable increase in the prevalence of congenital anomalies in the first month or first year following Chernobyl.” But the choice of the cohort periods for a study of “heritable effects” is interesting. On the basis of whole body monitoring results, genetic damage to the germ cells from internal exposures will have continued well into the control period C and damage will have been cumulative [44]. We have reanalysed their data for combined NTD hydrocephaly, microcephaly and anopthalmia in all their exposure groups using their periods. A test of T vs. C cohorts showed a significant effect with odds ratio (OR) of 1.20 (95% confidence interval [CI], 1.02 to 1.4; p=0.014). This was apparent in the test of E vs. C though the numbers were smaller. However, there was no increasing monotonic relation between assumed “dose” category and effect and this clearly influenced the authors’ conclusions. This is the common response to the finding of high risks at low doses and represents a good example of the Error Type 1 referred to above. It appears that the results actually show an increased risk if we combine all the exposure levels.

Chernobyl Effects in Belarus

Belarus received most contamination from Chernobyl. A central registry for CM existed from 1979 and rates of CM before and after the Chernobyl accident could thus be compared. A number of studies are listed in Table 1. Comparison of legal abortuses in 1982 to 1985 and 1987 to 1994 showed combined CM increases of 81%, 49%, and 43% in regions of high (>555 kBq/m2), medium (>37 kBq/m2), and low (<37 kBq/m2) contamination, the effect being significant at the 0.05 level in all three [22]. The genetic origin is confirmed in those anomalies which are combined with a recognized mutation that is not present in either of the parents [18].

A study [23] confirmed the CM excess in the Strict Registration of Malformations System finding 86% increase in 1987 to 1996 vs. 1982 to 1985 (high contamination) and 59% (control regions) (p<0.05). The same authors reported significant excess chromosome aberrations of dicentric and centric rings rates of 0.39±0.09% (n=91) in Gomel and Mogilev (>555 kBq/m2) compared with a control region of Minsk, Grodno and Novopolotsk (<37 kBq/m2) (n=118; CM=0.09±0.04) [23].

To 2004 there was no decrease in these rates [45]. The authors think these effects are genetically induced because it is not plausible that doses in pregnant females rose in the period of decreasing environmental contamination and decreasing food contamination after the accident. A Belarussian-Israeli group [46] found the following increased polygenetic disease rates in children of Chernobyl- exposed parents: hematological diseases (6-fold), endocrine diseases (2-fold), diseases of digestive organs (1.7-fold).

A 1994 study compared Gomel (high exposure) with Vitebsk (presumed low exposure) for mortality in children zero to four finding absolute CM rates of 4.1% vs. 3%, respectively [24]. Savchenko [25] writing for the United Nations reported frequency of CM in regions of Gomel between 1982 to 1985 and 1987 to 1989 ranging from 170% in Dobrush to 680% in Chechersk.

Petrova et al. [27] compared two high and two low contaminated regions of Belarus for a number of indicators of pregnancy outcome and child health. For CM, before and after Chernobyl increases for all CM were: Gomel 150%>Mogilev 130%>Brest 120%>Vitebsk 110%, the rank of their contamination levels. Kulakov et al. [26] examined 688 pregnancies and 7000 births in Chechersky (Gomel, Belarus) and Polessky (Kiev, Ukraine). Sharp reductions in birth rates in both regions after Chernobyl were ascribed partly to abortions. High perinatal mortality was ascribed partly to congenital malformations. Incidence increased by a factor of two following the accident for congenital heart disease, esophageal atresia, anencephaly, hydrocephaly and multiple malformations. Total number of neonatal disorders increased in Polessky (Ukraine) from 1983 to 1985 to 1986 to 1990 from 6.81 to 21.32 (313%) and in Chechersky from 5.15 to 10.49 [26].

Chernobyl Effects in Ukraine

The studies by Wertelecki and colleagues [29,30] were valuable for quantifying the effects. The Pripyat region of Ukraine on the border of Belarus was significantly contaminated. Populations are dependent on local produce. Internal contamination was quantified for two groups, a high and lower dose group by whole body monitoring for caesium-137 (Cs-137). In addition, local produce was analysed for both Cs-137 and the DNA seeking Sr-90. The Sr-90/Cs-137 ratio was between 0.5 and two, so Sr-90 (with its DNA affinity and anomalous RBE) represented a significant internal exposure.

Other Reports of Chernobyl Effects on Birth Defects; Soviet Nuclear Test Site

Down´s syndrome as a certain genetic effect increased in several contaminated European countries [18,48]. An example is shown in Figure 1. In West Berlin, which was a kind of closed island at that time, the geneticist Sperling registered a sharp and significant increase in cases exactly nine months after the accident, also in Belarus [49]. UNSCEAR [4,20] dismissed these findings (and similar reports from Scotland and Sweden) on the basis that the doses were “below background.” The EUROCAT combined registry study [19] did not find an increase in Down’s syndrome, neither in the authors’ analysis nor in our reanalysis. Other evidence is presented in Table 1 of increased CM rates after Chernobyl in Germany, Turkey, Croatia and Bulgaria [21,3237,50].

 

eht-31-e2016001f1.jpg

Figure 1.

Down’s syndrome before and after the Chernobyl accident (A) West Berlin and (B) Belarus. From Scherb H, et al. Naturwiss Rundsch 2011;64(5):229-239, with permission from Stuttgart [47].

Congenital effects were found near the former Soviet nuclear test site in Kazakhstan near Semipalatinsk. Sviatova et al. [51] studied CM in three generations of inhabitants, investigating births between 1967 and 1997. They found significantly increased rates of CM combined, including Down’s syndrome, microcephaly and multiple malformations in the same individual.

 

Hereditary Effects in Children of Exposed Mothers

If a population is exposed, genetic effects will occur in the gonads of mothers as well as of fathers. A German investigation of occupationally exposed females showed a 3.2-fold significant increase in congenital abnormalities, including malformations, in offspring [52]. The authors interpret the effect as generated in utero but do not prove such a connection. In our opinion, this appears to be improbable given the short sensitive phase in pregnancy and the ban on pregnant females working in high risk environments.

The findings confirm early results in the Department of Medical Genetics of Montreal Children’s Hospital where the genetic effects of diagnostic X-rays were investigated [53]. The author observed the offspring of mothers who had been treated in childhood for congenital hip dysplasia since 1925 and were X-rayed for several times in the pelvic region. The ovarian dose was estimated to lie between 60 mSv to 200 mSv. In 201 living births of these females there were 15 individuals with severe malformations and other congenital distortions or Down’s syndrome and 11 cases with other abnormalities (all congenital abnormalities 12.9%) while the control group showed less than half of this rate. The latter was chosen from a large group of descendants where the parents were unexposed siblings of the study group.

Taken together with other evidence from sex-ratio (discussed below) these studies indicate that hereditary effects exist in the children of exposed mothers.

Findings in the Descendants of Occupationally Exposed Men Including Nuclear Test Veterans

Congenital Malformations

Studies in children of exposed men where the mothers were not exposed will show definite hereditary effects. A compilation of results for CM in offspring of exposed fathers is given in Table 2.

Table 2. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4870760/table/t2-eht-31-e2016001/

Congenital anomalies, especially malformations, in descendants (1st generationa) of occupationally exposed men

The anomalies seen in the descendants of Chernobyl liquidators (Nos. 5-7) also indicate unexpectedly high radiation sensitivity.

Three studies of nuclear test veterans have shown large increases in congenital effects in children and one study has found similar levels of congenital conditions in the grandchildren (Nos. 8-10). The British carried out nuclear weapon tests and activities in Australia (Maralinga) and Christmas Island in the Pacific between 1952 and 1967. More than 20000 young national servicemen and other military personnel were stationed at the test sites. The sites were contaminated with fission fallout and nanoparticles of uranium and plutonium from the weapons, tritium and carbon-14. Urquhart [61] analysed data in children from 1147 veteran families. Two hundred and thirty-three out of them had illnesses or defects (cancer, malformations, mental retardation) that could have a genetic origin: one in five families. They registered a 7:1 rate of abnormal children conceived before the tests vs. those conceived after the tests.

Two further studies of the offspring of a group of veterans have been published. Roff [62] carried out a questionnaire study of members of the British Nuclear Test Veteran Association (BNTVA) and reported excess rates of cardiovascular disorders, spina bifida, hydrocephalus and hip deformities. Busby and de Messieres [63] examined a different sample of the BNTVA, employed controls and compared with the European EUROCAT rates. Based on 605 veteran children and 749 grandchildren compared with 311 control children and 408 control grandchildren there were significant excess levels of miscarriages, stillbirths, infant mortality and congenital illnesses in the veterans’ children relative both to control children and expected numbers. There were 105 miscarriages in veteran’s wives compared with 18 in controls (OR, 2.75; 95% CI, 1.56 to 4.91; p<0.001). There were 16 stillbirths; three in controls (OR, 2.70; 95% CI, 0.73 to 11.72; p=0.13). Perinatal mortality OR was 4.3 (95% CI, 1.22 to 17.9; p=0.01) on 25 deaths in veteran children. Fifty-seven veteran children had congenital conditions vs. three control children (OR, 9.77; 95% CI, 2.92 to 39.3; p<0.001) these rates being also about eight times those expected on the basis of UK EUROCAT data for 1980 to 2000. For grandchildren similar levels of congenital illness were reported with 46 veteran grandchildren compared with three controls (OR, 8.35; 95% CI, 2.48 to 33.8; p<0.001).

Cancer and Leukemia

In 1984, an exceptionally high level of leukaemia cases in children and juveniles was reported in Seascale, near the nuclear reprocessing plant in Sellafield in Cumbria, UK. The authors explained this as a hereditary effect, because the fathers of the patients had worked in the plant [64]. The authorities argued that the doses were too low. The effect, however, had been described in principle already in experimental studies [65], and also after X-ray diagnostic exposures (Table 3). A significant number of other child leukemia and cancer studies have been carried out and are listed in Table 3.

Table 3. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4870760/table/t3-eht-31-e2016001/

Cancer in children after preconceptional low-dose exposure of parents

The research of Hicks et al. [66] concerned exposed servicemen (Table 3). McKinney et al. [67] found a 3.2-fold increase in leukaemia and lymphomas in children of occupationally exposed men in three British regions in a case-control study.

Sex-ratio and X-linked Lethal Factors

Normally, it is not possible to study how many inseminated oocytes (zygotes) will be aborted after irradiation of the gonadal cells in humans. But it is observed that males who were exposed have fewer daughters than sons i.e., the male/female sex-ratio increases with dose.

Gene mutations may be responsible for the death of the zygote and will also occur in the sex chromosomes where they will predominantly affect the greater X-chromosome which can only be transmitted to a daughter. A dominant lethal factor will then lead to the death of the female zygote. Recessive lethal factors in the X-chromosome are much more frequent than dominant ones [74]. They affect only female births.

An impressive result was obtained in workers of the British nuclear fuel reprocessing plant at Sellafield in West Cumbria [75]. The county sex-ratio was 1055 boys/1000 girls, the normal value. For the children of fathers employed at Sellafield the ratio was 1094. For those with recorded doses greater than 10 mSv in the 90 days preconception period it was 1396, significant at the p<0.01 level. A similar effect was detected in cardiologists, who undertook interventional angiographic procedures involving X-ray exposures [76].

Scherb and Voigt studied different groups of inhabitants in a variety of countries after the Chernobyl accident for hereditary effects and found radiation-induced foetal deaths and early mortality, Down’s syndrome and alterations of the birth sex-ratio. They examined nuclear tests above ground which affected US inhabitants, Chernobyl emissions in Europe, and those living near German and Swiss nuclear plants. Results showed significant reduction in the female birth rate in all these [77,78].

The ABCC studies overall involve all the types of research error listed in the introduction, which we believe is the explanation for the failure to see excess heritable damage. The main problem was choice of controls. The sex-ratio studies were abandoned due to seemingly anomalous effects. De Bellefeuille [9] re-examined the issue in 1961 and found that results were biased by employing sex-ratios of children of parents who had both been exposed. Any effects, being in opposite directions, would therefore cancel out; his re-analysis based on children with only one exposed parent showed a clear effect in the expected direction. Padmanabhan [79] recently re-examined the issue using the original controls (abandoned by ABCC). Using the two not in city (NIC) groups Padmanabhan showed significant sex-ratio effects in the expected directions.

Sex-ratio is a very relevant parameter. It shows that genetic alterations are induced in the germ cells of males by very low doses, and it proves to be a sensitive indicator for exposures of the population.

Atmospheric Weapons test Fallout

The most significant global incident in terms of human exposure has been the atmospheric nuclear testing fallout which peaked between 1959 and 1963. It was this testing which worried Muller [1]. The tests increased the rates of neonatal and infant mortality in the US and the UK [80,81]. An interesting insight comes from a Canadian study of CM during the fallout period. le Vann [82] was concerned to examine the link between congenital malformation and the use of the drug thalidomide. He found that in Alberta there was no relation between the use of thalidomide and congenital birth outcomes but noted a strong association with precipitation; areas with high radioactive fallout had high levels of birth defects. Whilst we are not alleging that thalidomide does not have teratogenic effects, since many females in the le Vann study who never took any drugs gave birth to the typical “thalidomide spectrum” babies it seems that exposure to the fallout may have, as Muller [1] feared, have caused an effect. Ignoring this and the infant mortality findings involved a Error Type 3.

Genetic vs. Genomic, Mendelian vs. In Utero

We have not distinguished between Mendelian genetic effects involving the transfer of specific gene mutations to the offspring and effects consequent upon the operation of genomic instability, whereby the offspring inherit a tendency to apparently increase rates of all mutation above the normal rate for that population [83]. For the purposes of the arguments relating to radiation risk of harmful heritable conditions in the first generation such a discussion is unnecessary but needs to be revisited if multi-generational effects are being discussed. The question of germ cell damage in parents vs. in utero damage to development, though important, seems to us to be beside the point. All these CM effects are caused by mutation of DNA whether in the parental germ cells and precursors or from implantation to birth. Our aim is to assess the genetic risk based on observations. However, from the sex-ratio results it would seem that parental exposure is a dominant cause of radiation induced CM.

How Is It That the ICRP Risk Coefficient Is Wrong?

A reviewer asked us to address this question and to provide a brief account of biological mechanism. We begin with mechanism. The ICRP risk model is based on two big ideas: absorbeddose, which is average energy per unit mass of tissue, and the linear no threshold (LNT) response. For internal exposure to substances like Sr-90 and uranium, which both have high affinity for DNA, the concept of dose is meaningless [loc.cit. 6,10]. For CM as an outcome, it is also clear that the LNT model is unsustainable [5], because as the “dose” is increased from zero there are many blocks to the successful journey from germ cell to infant, the CM end point. Biological plausibility would predict an increase in damage and thus CM at very low dose, followed by a drop in CM due to failure to implant, early miscarriage, abortion. This would result in a saturation or “hogs-back” dose response in the lowest dose region. Only the survivors would make it to be registered as CM. The dose response would look like that in Figure 2 where A is the initial outcome and B is where the foetus dies or there is no implantation. The region C would relate to in utero effects later in gestation. There would be a fall in birth rate associated with region B and C; there usually is. You can see this effect most clearly in the EUROCAT studies where relative risk rises and then falls as dose increases [19]. It is perfectly clear in many other studies. It is clear in in analysis of infant leukemia after Chernobyl in 5 countries shown in Figure 3 [84] and the study of cleft palate in Bavaria [38,39] analysed by Korblein [40].

 

eht-31-e2016001f2

Figure 2.

Regions of interest in a theoretically predicted dose response relation (see text and ECRR 2010). Exactly this dose response is seen in infant leukemia rates after Chernobyl in Greece, Germany (three dose regions) Wales, Scotland and Belarus [84]. From

 

3.jpg

Figure 3.

Dose response for infant leukemia in the countries examined in meta-analysis of five reports in Busby 2009 [84] (UK data from Childhood Cancer Research Group Oxford). Effect is fractional excess relative risk, and dose is given by UK National Radiological

 

What Is the Correct Risk Coefficient?

The Chernobyl studies presented in Table 1 may be used to obtain an approximate risk factor for all CM in those exposed to fission spectrum radionuclides as assessed by Cs-137 area contamination. We can employ the data from Wertelecki et al. [30] on internal contamination to assess doses from Cs-137 and Sr- 90. The excess relative risk (ERR) for all CM follows a “hogsback” shaped response and is about 0.5 per mSv at 1 mSv saturating at between 0.1 to 0.2 per mSv at 10 mSv based on cumulative dose as assessed by ICRP models using Cs-137 area contamination as a basis of calculations. This means that the background rate will double or treble up to 10 mSv exposure and thereafter flatten out or fall. But it also results in a 50% excess risk at doses as low as 1 mSv. This ERR and dose response model accommodates all the observational data from Chernobyl and also elsewhere. We must make it clear that this model is for mixed internal and external exposure to fission product contamination doses as employed by UN agencies and may not necessarily apply to pure external exposures (e.g., X-rays, gamma- rays). However, it should be noted that Stewart’s finding of a 40% excess risk of childhood leukemia after a 10 mSv obstetric X-ray dose [71] is comparable with what is found at these higher doses in this review.

Conclusion

Genetically induced malformations, cancers, and numerous other health effects in the children of populations who were exposed to low doses of ionizing radiation have been unequivocally demonstrated in scientific investigations. Using data from Chernobyl effects we find a new ERR for CM of 0.5 per mSv at 1 mSv falling to 0.1 per mSv at 10 mSv exposure and thereafter remaining roughly constant. This is for mixed fission products as defined though external exposure to Cs-137. Results show that current radiation risk models fail to predict or explain the many observations and should be abandoned. Further research and analysis of previous data is suggested, but prior assumptions of linear dose response, assumptions that internal exposures can be modelled using external risk factors, that chronic and acute exposures give comparable risks and finally dependence on interpretations of the high dose ABCC studies are all seen to be unsafe procedures.

Acknowledgments

We are grateful to Marvin Resnikoff and Rick Haaker for running the Microshield program for dose rates over contaminated areas.

Footnotes

The authors have no conflicts of interest associated with material presented in this paper.

References

1. Muller HJ. Radiation damage to the genetic material. Am Sci. 1950;38(1):33–59. [PubMed]

2. International Commission on Radiological Protection The 2007 recommendations of the International Commission on Radiological Protection. 2007 [cited 2016 Jan 28]. Available from: http://www.icrp.org/publication.asp?id=ICRP%20Publication%20103.

3. International Commission on Radiological Protection 1990 Recommendations of the International Commission on Radiological Protection. 1991 [cited 2016 Jan 28]. Available from: http://www.icrp.org/publication.asp?id=icrp%20publication%2060.

4. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) UNSCEAR 2001 report: hereditary effects of radiation. 1991 [cited 2016 Jan 28]. Available from: http://www.unscear.org/unscear/en/publications/2001.html.

5. Doll R. Hazards of the first nine months: an epidemiologist’s nightmare. J Ir Med Assoc. 1973;66(5):117–126. [PubMed]

6. Busby C. Aspects of DNA damage from internal radionuclides. 2013 [cited 2016 Jan 28]. Available from: http://www.intechopen.com/books/new-research-directions-in-dna-repair/aspects-ofdna-damage-from-internal-radionuclides.

7. Platt JR. Strong inference: certain systematic methods of scientific thinking may produce much more rapid progress than others. Science. 1964;146(3642):347–353. [PubMed]

8. Feyerabend P. Against method. 4th ed. London: Verso; 2010. pp. 13–48.

9. De Bellefeuille P. Genetic hazards of radiation to man. I. Acta Radiol. 1961;56:65–80. [PubMed]

10. Busby C. Uranium epidemiology. Jacobs J Epidemiol Prev Med. 2015;1(2):009.

11. Huxley HE, Zubay G. Preferential staining of nucleic acid-containing structures for electron microscopy. J Biophys Biochem Cytol. 1961;11:273–296. [PMC free article] [PubMed]

12. Constantinescu DG, Hatieganu E. Metachromasia through uranyl ions: a procedure for identifying the nucleic acids and the nucleotides. Anal Biochem. 1974;62(2):584–587. [PubMed]

13. Nielsen PE, Hiort C, Sonnichsen SH, Buchardt O, Dahl O, Norden B. DNA binding and photocleavage by uranyl(VI)(UO22+) salts. J Am Chem Soc. 1992;114(13):4967–4975.

14. Luning KG, Frolen H, Nelson A, Ronnback C. Genetic effects of strontium-90 injected into male mice. Nature. 1963;197:304–305. [PubMed]

15. Ehrenberg L, Eriksson G. The dose dependence of mutation rates in the rad range, in the light of experiments with higher plants. Acta Radiol Diagn (Stockh) 1966;Suppl 254:73–78. [PubMed]

16. Stokke T, Oftedal P, Pappas A. Effects of small doses of radioactive strontium on the rat bone marrow. Acta Radiol Ther Phys Biol. 1968;7(5):321–329. [PubMed]

17. Smirnova EI, Lyaginskaya AM. Effects of small doses of radioactive strontium on the rat bone marrow. In: Moskalev YI, Idz Y, editors. Radioactive isotopes and the body. Moscow: Izdatel’stvo Meditsina; 1969. p. 348. (Russian)

18. Busby C, Lengfelder E, Pflugbeil S, Schmitz-Feuerhake I. The evidence of radiation effects in embryos and fetuses exposed to Chernobyl fallout and the question of dose response. Med Confl Surviv. 2009;25(1):20–40. [PubMed]

19. Dolk H, Nichols R. Evaluation of the impact of Chernobyl on the prevalence of congenital anomalies in 16 regions of Europe. Int J Epidemiol. 1999;228(5):941–948. [PubMed]

20. United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR 2006 report vol. I: effects of ionizing radiation. [cited 2016 Jan 28]. Available from: http://www.unscear.org/unscear/en/publications/2006_1.html.

21. Hoffmann W. Fallout from the Chernobyl nuclear disaster and congenital malformations in Europe. Arch Environ Health. 2001;56(6):478–484. [PubMed]

22. Lazjuk GI, Nikolaev DL, Novikova IV. Changes in registered congenital anomalies in the Republic of Belarus after the Chernobyl accident. Stem Cells. 1997;2:255–260. [PubMed]

23. Feshchenko SP, Schröder HC, Müller WE, Lazjuk GI. Congenital malformations among newborns and developmental abnormalities among human embryos in Belarus after Chernobyl accident. Cell Mol Biol (Noisy-le-grand) 2002;48(4):423–426. [PubMed]

24. Bogdanovich IP. Medicobiological effects and the ways of overcoming the Chernobyl accident consequence. Minsk-Vitebsk: Ministry of Emergency and Chernobyl Problems of Belarus and Academy of Sciences of Belarus; 1997. Comparative analysis of the death rate of children, aged 0-5, in 1994 in radiocontaminated and conventionally clean areas of Belarus; p. 4. (Russian)

25. Savchenko VK. The ecology of the Chernobyl catastrophe: scientific outlines of an International Programme of Collaborative Research. Paris: United Nations Educational Scientific and Organisation; 1995. p. 83.

26. Kulakov VI, Sokur TN, Volobuev AI, Tzibulskaya IS, Malisheva VA, Zikin BI, et al. Female reproductive function in areas affected by radiation after the Chernobyl power station accident. Environ Health Perspect. 1993;2:117–123. [PMC free article] [PubMed]

27. Petrova A, Gnedko T, Maistrova I, Zafranskaya M, Dainiak N. Morbidity in a large cohort study of children born to mothers exposed to radiation from Chernobyl. Stem Cells. 1997;2:141–150. [PubMed]

28. Shidlovskii PR. General morbidity of the population in districts of the Brest region. Zdravoohranenie Belorussii (Minsk) 1992;1:8–11. (Russian)

29. Wertelecki W. Malformations in a Chernobyl-impacted region. Pediatrics. 2010;125(4):e836–e843. [PubMed]

30. Wertelecki W, Yevtushok L, Zymak-Zakutnia N, Wang B, Sosyniuk Z, Lapchenko S, et al. Blastopathies and microcephaly in a Chernobyl- impacted region of Ukraine. Congenit Anom (Kyoto) 2014;54(3):125–149. [PMC free article] [PubMed]

31. Godlevsky I, Nasvit O. Dynamics of health status of residents in the Lugyny district after the accident of the ChNPS. In: Imanaka T, editor. Research activities about the radiological consequences of the Chernobyl NPS accident and social activities to assist the sufferers by the accident. Osaka: Kyoto University Research Reactor Institute; 1998. pp. 149–156.

32. Akar N, Ata Y, Aytekin AF. Neural tube defects and Chernobyl? Paediatr Perinat Epidemiol. 1989;3(1):102–103. [PubMed]

33. Caglayan S, Kayhan B, Menteşoğlu S, Aksit S. Changing incidence of neural tube defects in Aegean Turkey. Paediatr Perinat Epidemiol. 1989;3(1):62–65. [PubMed]

34. Güvenc H, Uslu MA, Güvenc M, Ozekici U, Kocabay K, Bektaş S. Changing trend of neural tube defects in eastern Turkey. J Epidemiol Community Health. 1993;47(1):40–41. [PMC free article] [PubMed]

35. Mocan H, Bozkaya H, Mocan MZ, Furtun EM. Changing incidence of anencephaly in the eastern Black Sea region of Turkey and Chernobyl. Paediatr Perinat Epidemiol. 1990;4(3):264–268. [PubMed]

36. Moumdjiev N, Nedkova V, Christova V, Kostova S. Influence of the Chernobyl reactor accident on the child health in the region of Pleven, Bulgaria. International Pediatric Association. Excerpts from the 20th International Congress of Pediatrics; 1992 Sep 5-10; Rio de Janeiro, Brazil. Vevey: Nestlé Nutrition Services. 1992:57.

37. Kruslin B, Jukić S, Kos M, Simić G, Cviko A. Congenital anomalies of the central nervous system at autopsy in Croatia in the period before and after the Chernobyl accident. Acta Med Croatica. 1998;52(2):103–107. [PubMed]

38. Zieglowski V, Hemprich A. Facial cleft birth rate in former East Germany before and after the reactor accident in Chernobyl. Mund Kiefer Gesichtschir. 1999;3(4):195–199. (German) [PubMed]

39. Scherb H, Weigelt E. Cleft lip and cleft palate birth rate in Bavaria before and after the Chernobyl nuclear power plant accident. Mund Kiefer Gesichtschir. 2004;8(2):106–110. (German) [PubMed]

40. Korblein A. Abnormalities in Bavaria after Chernobyl. Strahlentelex. 2004;417:4–6. (German)

41. Government of Berlin West. Section of Health and Social Affairs . Annual health report. Berlin: Government of Berlin West; 1987. (German)

42. Lotz B, Haerting J, Schulze E. Changes in fetal and childhood autopsies in the region of Jena after the Chernobyl accident. 1996 [cited 2016 Jan 28]. Available from: http://www.meb.uni-bonn.de/gmds/abstracts/0095e.html (German)

43. Eckerman KF, Ryman JC. Federal guidance report 12: external exposure to radionuclides in air, water and soil. 1993 [cited 2016 Feb 20]. Available from: https://crpk.ornl.gov/documents/fgr12.pdf.

44. Busby C, Cato MS. Increases in leukemia in infants in Wales and Scotland following Chernobyl: evidence for errors in statutory risk estimates. Energy Environ. 2000;11(2):127–139.

45. Yablokov AV, Nesterenko VB, Nesterenko AV. Chernobyl– consequences of the Catastrophe for people and the environment. 2009 [cited 2016 Feb 20]. Available from: http://www.strahlentelex.de/Yablokov_Chernobyl_book.pdf. [PubMed]

46. Lomat L, Galburt G, Quastel MR, Polyakov S, Okeanov A, Rozin S. Incidence of childhood disease in Belarus associated with the Chernobyl accident. Environ Health Perspect. 1997;6:1529–1532. [PMC free article] [PubMed]

47. Scherb H, Sperling K. Today’s lessons from the Chernobyl accident. Naturwiss Rundsch. 2011;64(5):229–239. (German)

48. Sperling K, Neitzel H, Scherb H. Evidence for an increase in trisomy 21 (Down syndrome) in Europe after the Chernobyl reactor accident. Genet Epidemiol. 2012;36(1):48–55. [PubMed]

49. Zatsepin IO, Verger P, Gagniere B, Khmel RD, Belarus Institute for Hereditary Diseases Cluster of Down’s syndrome cases registered in January 1987 in Republic of Belarus as a possible effect of the Chernobyl accident. Int J Radiat Med. 2004;6(1-4):57–71.

50. Akar N. Further notes on neural tube defects and Chernobyl. Pediatr Perinatal Epidemiol. 1994;8:456–457. [PubMed]

51. Sviatova GS, Abil’dinova GZh, Berezina GM. Frequency, dynamics, and structure of congenital malformations in populations under longterm exposure to ionizing radiation. Genetika. 2001;37(12):1696–1704. (Russian) [PubMed]

52. Wiesel A, Spix C, Mergenthaler A, Queisser-Luft A. Maternal occupational exposure to ionizing radiation and birth defects. Radiat Environ Biophys. 2011;50(2):325–328. [PubMed]

53. Cox DW. An investigation of possible genetic damage in the offspring of women receiving multiple diagnostic pelvic X rays. Am J Hum Genet. 1964;16:214–230. [PMC free article] [PubMed]

54. Macht SH, Lawrence PS. National survey of congenital malformations resulting from exposure to roentgen radiation. Am J Roentgenol Radium Ther Nucl Med. 1955;73(3):442–466. [PubMed]

55. Sever LE, Gilbert ES, Hessol NA, McIntyre JM. A case-control study of congenital malformations and occupational exposure to low-level ionizing radiation. Am J Epidemiol. 1988;127(2):226–242. [PubMed]

56. Parker L, Pearce MS, Dickinson HO, Aitkin M, Craft AW. Stillbirths among offspring of male radiation workers at Sellafield nuclear reprocessing plant. Lancet. 1999;354(9188):1407–1414. [PubMed]

57. Shakhatreh FM. Reproductive health of male radiographers. Saudi Med J. 2001;22(2):150–152. [PubMed]

58. Tsyb AF, Souchkevitch GN, Lyasko LI, Artamonova YZ, Navolokin VV, Raykina LG. General characterization of health in first-generation offspring born to liquidators of the Chernobyl NPP accident consequences. Int J Radiat Med. 2004

59. Matveenko EG, Borovykova MP, Davydow GA. Physical characteristics and primary morbidity in liquidator´s children. In: Yablokov AV, Busby C, editors. Chernobyl 20 years after. Aberystwyth: Green Audit Books; 2006. pp. 176–179.

60. Liaginskaia AM, Tukov AR, Osipov VA, Ermalitskiĭ AP, Prokhorova ON. Congenital malformations among offspring of the liquidators of the consequences from Chernobyl accident. Radiats Biol Radioecol. 2009;49(6):694–702. (Russian) [PubMed]

61. Urquhart J. New Evaluation of Radiation Risk, International Conference of the Society for Radiation Protection. Bremen: Gesellschaft fur Strahlenschutz; 1992. Radiation exposure and subsequent health history of veterans and their children; pp. 209–216. (German)

62. Roff SR. Mortality and morbidity of members of the British Nuclear Tests Veterans Association and the New Zealand Nuclear Tests Veterans Association and their families. Med Confl Surviv. 1999;15 Supple 1:i-ix, 1-51. [PubMed]

63. Busby C, de Messieres ME. Miscarriages and congenital conditions in offspring of veterans of the British Nuclear Atmospheric Test Programme. Epidemiology (Sunnyvale) 2014;4:172.

64. Gardner MJ, Snee MP, Hall AJ, Powell CA, Downes S, Terrell JD. Results of case-control study of leukaemia and lymphoma among young people near Sellafield nuclear plant in West Cumbria. BMJ. 1990;300(6722):423–429. [PMC free article] [PubMed]

65. Nomura T. Parental exposure to x rays and chemicals induces heritable tumours and anomalies in mice. Nature. 1982;296(5857):575–577. [PubMed]

66. Hicks N, Zack M, Caldwell GG, Fernbach DJ, Falletta JM. Childhood cancer and occupational radiation exposure in parents. Cancer. 1984;53(8):1637–1643. [PubMed]

67. McKinney PA, Alexander FE, Cartwright RA, Parker L. Parental occupations of children with leukaemia in west Cumbria, north Humberside, and Gateshead. BMJ. 1991;302(6778):681–687. [PMC free article] [PubMed]

68. Graham S, Levin ML, Lilienfeld AM, Schuman LM, Gibson R, Dowd JE, et al. Preconception, intrauterine, and postnatal irradiation as related to leukemia. Natl Cancer Inst Monogr. 1966;19:347–371. [PubMed]

69. Shu XO, Gao YT, Brinton LA, Linet MS, Tu JT, Zheng W, et al. A population-based case-control study of childhood leukemia in Shanghai. Cancer. 1988;62(3):635–644. [PubMed]

70. Shu XO, Reaman GH, Lampkin B, Sather HN, Pendergrass TW, Robison LL. Association of paternal diagnostic X-ray exposure with risk of infant leukemia. Investigators of the Childrens Cancer Group. Cancer Epidemiol Biomarkers Prev. 1994;3(8):645–653. [PubMed]

71. Stewart A, Webb J, Hewitt D. A survey of childhood malignancies. Br Med J. 1958;1(5086):1495–1508. [PMC free article] [PubMed]

72. Natarajan N, Bross ID. Preconception radiation and leukemia. J Med. 1973;4(5):276–281. [PubMed]

73. Shiono PH, Chung CS, Myrianthopoulos NC. Preconception radiation, intrauterine diagnostic radiation, and childhood neoplasia. J Natl Cancer Inst. 1980;65(4):681–686. [PubMed]

74. Vogel F, Rohrborn G, Schleiermeyer E. Radiation genetics in mammals. Stuttgart: Verlag; 1969. (German)

75. Dickinson HO, Parker L, Binks K, Wakeford R, Smith J. The sex ratio of children in relation to paternal preconceptional radiation dose: a study in Cumbria, northern England. J Epidemiol Community Health. 1996;50(6):645–652. [PMC free article] [PubMed]

76. Choi JW, Mehrotra P, Macdonald LA, Klein LW, Linsky NM, Smith AM, et al. Sex proportion of offspring and exposure to radiation in male invasive cardiologists. Proc (Bayl Univ Med Cent) 2007;20(3):231–234. [PMC free article] [PubMed]

77. Scherb H, Voigt K. Trends in the human sex odds at birth in Europe and the Chernobyl Nuclear Power Plant accident. Reprod Toxicol. 2007;23(4):593–599. [PubMed]

78. Scherb H, Voigt K. The human sex odds at birth after the atmospheric atomic bomb tests, after Chernobyl, and in the vicinity of nuclear facilities. Environ Sci Pollut Res Int. 2011;18(5):697–707. [PubMed]

79. Padmanabhan VT. Sex ratio in A-bomb survivors. Evidence of radiation induced X-linked lethal mutations. In: Busby C, Busby J, Rietuma D, de Messieres M, editors. Fukushima and health: what to expect. Proceedings of the 3rd International Conference for the European Committee on Radiation Risk; 2009 May 5-6; Lesvos, Greece. Aberystwyth: Green Audit; 2012. pp. 273–304.

80. Sternglass EJ. Environmental radiation and human health. In: LeCam LM, Neyman J, Scott EL, editors. Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability; 1971 Jul 19-22; Berkeley, CA, USA. Berkeley: University of Calififornia Press; 1971. pp. 145–221.

81. Whyte RK. First day neonatal mortality since 1935: re-examination of the Cross hypothesis. BMJ. 1992;304(6823):343–346. [PMC free article] [PubMed]

82. le Vann LJ. Congenital abnormalities in children born in Alberta during 1961: a survey and a hypothesis. Can Med Assoc J. 1963;89(3):120–126. [PMC free article] [PubMed]

83. Baverstock K, Belyakov OV. Some important questions connected with non-targeted effects. Mutat Res. 2010 [PubMed]

84. Busby CC. Very low dose fetal exposure to Chernobyl contamination resulted in increases in infant leukemia in Europe and raises questions about current radiation risk models. Int J Environ Res Public Health. 2009;6(12):3105–3114. [PMC free article] [PubMed]

 

https://www.ncbi.nlm.nih.gov/pubmed/26791091

January 31, 2017 Posted by | radiation | , , | Leave a comment

The Small Plutonium Dust in the Lung

https://blogs.mediapart.fr/ano/blog/221216/la-petite-poussiere-de-plutonium-melox-astrid

Translation from french by Hervé Courtois (Dun Renard)

1, What does a small grain of invisible dust of plutonium arrived in a lung?

2) Why are the lungs of French people at risk?

3) and their wallets?

The small grain of plutonium in a lung

The following text * was written by Maurice Eugène ANDRÉ, commandant, honorary instructor in NBCR, Nuclear, Biological, Chemical and Radiological, of the Royal Air Force of Belgium.

He made a great effort of pedagogy:

“The technical aspect developed below shows that a plutonium dust with a diameter of the order of a micron (millionth of a meter) kills by simply lodging in a lung: this dust in fact delivers more than 100 000 rad [see at the end the notes about units] in one year to a lung area surrounding the dust, a very small area delimited by a sphere with a diameter of the order of one tenth of a millimeter having radioactive dust as the center.

I believe that I must reveal the artifice of calculation used by pronuclear scientists to deceive scientists from other disciplines and the public. Before exposing the calculations themselves, I would give an example of this artifice of calculation by applying it to a domain where the vice of reasoning is more apparent.

Here is the example: one can argue that a rifle bullet is not dangerous. It is sufficient to disregard the point of impact (which, of course, absorbs all the kinetic energy of the projectile) and to assume that all the kinetic energy of the ball will be absorbed by a larger area, as for example the whole surface of the body, in which case it is demonstrable that no point of rupture of the flesh will be found. In this example, you will immediately understand the flaw of reasoning which is to disregard the actual fact that the bullet attacks a specific location and not the whole body or a whole organ. It forces rupture at a point because it concentrates all its energy on a small surface or area, and, with equal energy, the smaller this zone, the more certain is the rupture.

Thus, in the case studied for plutonium dust, they seriously deceive the public if they suppose, in the calculations, that the energy released in a determined time by the radioactive dust is diffused throughout the lung, when in reality, it attacks with great precision a well-defined zone of the lung and is therefore very dangerous because it can cause death.

Lus add for non-scientists that, in the case of Pu 239 dust with a diameter of the order of one micron, lodged in a lung, the area to be considered (the small sphere of flesh surrounding the dust) is injured at the rate of one particle shot (ejection of a nucleus of helium projected into the flesh at about 20,000 km per second) every minute (more exactly 1414 shots per one thousand minutes).

Under these repeated conditions of aggression, the body is unable to restore the area, however small it may be, constantly destroyed. Everything happens, in fact, as if they were asking masons to build a house around a submachine gun that would shoot in any direction, and without warning, about a shot every minute.

In this example, it will be understood that the “masons” are the biological materials drained by the body towards the destroyed zone in order to carry out repairs, while the “house to build” is the area of the lung to be restored. Finally, it will be understood that the role of the “submachine gun” is brilliantly held by the radioactive dust of plutonium which can shoot, without interruption, at the same rate, many years (a plutonium dust only decreases its rate of fire very slowly reaching half that rate only after the enormous period of twenty-four thousand years, a very long period in relation to the duration of a man’s life). […] The phenomenon of the considered intensive and uninterrupted shooting is played on a very small scale, but this does not change the reality, which leads, no more and no less, to the onset of lung cancer.

It is the finding that a local and repeated irradiation is harmful and presents necrosing effects: The cancer will proliferate throughout the body from the area, however small it may be, subjected to intense ionization for a sufficient time. In fact, it is a question, on the part of the body, of a reaction to the exhaustion of the faculty of reparation in a very precise place which has been destroyed a very large number of times. “

* It was published in “Studies and expansion”, Quarterly, No. 276, May-June 1978, and reproduced in the book of Wladimir Tchertkoff, “The Crime of Chernobyl-The Nuclear Gulag”, Actes Sud, 2006, p. 83-5.

Illustration

An autoradiographic study (auto because it is the sample that produces the radiation itself) was done on alveolar macrophages extracted by pulmonary lavage of rats exposed to MOX Massiot et al., 1997, “Physico-chemical characterization of inhalable powders of mixed oxides U, Pu)O2 from the COCA and MIMAS processes “ , Radiation protection vol. 32, No. 5: 617-24; https://www.cambridge.org/core/journals/radioprotection/article/div-classtitlecaracterisation-physico-chimiques-des-poudres-inhalables-dandaposoxydes-mixtes-u-puospan-classsub2span-issues-des-procedes-coca-et-mimasdiv/8FFB37C9DCB12F360802D9099C0E3761). To ± save La Hague and Areva, this powder consisting of 3 to 12% plutonium is used in the atomic reactors ~ 900 Megawatt of EDF.

It was found that “a great heterogeneity of the dose distribution within the pulmonary tissues after inhalation” (Figure 1)

pu-mox-poumon.jpg

Stars Traces alpha Pu emissions, lung cells © Massiot et al 1997, ffig. 3

 Fig. 1. Autoradiography of rat alveolar macrophages extracted by pulmonary lavage after MOX powder inhalation; exposure time 24h; (Massiot et al 1997, figure 3).The small lines starting from the particles are the traces of alpha disintegrations which destroy the biological tissue on their route.

The authors write: “Autoradiographic analysis confirms the presence of hot spots (Figure 3) whose activity is compatible with the presence of pure PuO2 particles and shows the presence of numerous particles with Low specific activity (1 to 2 traces per day). ” (…) Thus, in terms of radiotoxicology, the problem posed is not limited to the presence of hot spots, but to their association with a much more homogeneous irradiation due to particles of low specific activity. It should be emphasized here that no experimental data are currently available to assess the risks associated with such exposure.” (Massiot et al., 1997, pp. 622-23). This remark was made two years after the opening of MELOX. The future may leave us some funny surprises …

Melox, tons of fine plutonium powder

MELOX, a project carried out since 1986 by the powerful member of the “corps des mines” Jean Syrota, started in 1994-95 and has the right to produce 115 tons of MOX oxide per year (about 100 tons of heavy metal) for France, for Germany (1/3 of the production of MELOX in 2001), Switzerland and before Fukushima for Japan … which also store plutonium at La Hague.
Indeed, plutonium, which is produced in all reactors, can only come from a chemical reprocessing plant of the La Hague type. It must be extracted: fuming nitric acid, massive discharges of krypton-85 etc. MELOX is in some ways the obligatory after-sales service of such a factory. It takes the two or nothing.

melox-billet.jpg

MELOX chimney© Areva

Fig. 2. One of the two chimneys of MELOX in Marcoule. The air extracted from the depressurized workshops handling the ultra-fine Uranium and the plutonium powder, is expelled through cascade filters by these chimneys

The plutonium powder (80 μm, mass area 3.5-5 m2 / g) comes from La Hague and the uranium powder from Pierrelatte. There are on-site buffer storages. A primary mixture of 30% PuO2 is put into ball mills for 90 minutes and go thru a 15 μm granolumetry. Posterior fit with uranium powder. The powder is therefore very thin and fluid to be able to be poured like a liquid in tiny dices of one centimeter. It is eminently dispersible by any breath. There were echoes during the dismantling of the Marcoule AT-Pu which preceded MELOX: “The entire internal surface of the machine is covered with a thin black film,uranium and plutonium powder. with grains of a few microns, the highly volatile plutonium and uranium powder was deposited everywhere. On the surfaces of the boxes, on, under and inside the equipments, in all interstices. “ (Libération 28/10/09, S. Huet). In October 2009, after hiding it for several months,The CEA announced that the plutonium fuel dust that had slipped through the interstices over the years was not about 8 kg As they had “estimated” but “about” 39 kg.There was a theoretical risk, that the CEA was unaware, of a criticity accident (the “critical mass” announced being about 16 kg) for its staff.

Such plants must be completely sealed and it is imperative that the expelled air (air drawn from the workshops to be depressurized) to be filtered with great finesse. The cascading filters presented in the flyers like the top of the top, are an absolute, the least, of necessity. That said if (or when) it flees nobody knows it if the operator does not say it. It is completely impossible for an individual, and even many laboratories, to identify plutonium.

MELOX uses about 7 tons of plutonium per year that passes in powder form and therefore any situation of non-containment represents an enormous risk on the Cotes du Rhône and the Valley (Aircraft, explosion, earthquakes with very probable liquefaction on such a site with sandbanks, breaking the waterproofing, etc.). This would require the evacuation of very large areas (Wise-Paris : http://www.wise-paris.org/francais/rapports/030305MeloxEP-Resume-fin.pdf p.6)..

The CEA-Astrid project, three handfuls of billions

While Phenix in Marcoule still has a part of its irradiated fuel in the belly under its storage shed, its sodium heated by electrical resistances (until 2030), The CEA wants to build another Superphenix (with the same metallic sodium), project which it renamed Astrid.

This one, they want it with a fuel more and more “hot”: 25% of plutonium.

Unfortunately Areva-MELOX being very automated can not do that … So they need another MELOX. The National Commission of Evaluation, CNE, set up by the Bataille-Revol-Birraux laws of 1991 and 2006 was tasked to help with the task. In its 2010 report (Appendix p.28) the CNE wrote: “The construction of the Astrid reactor must be accompanied by the commissioning of a Mox fuel fabrication plant (AFC) in La Hague …” And the first page of the summary of its 2013 report for decision-makers: “In a tense economic context, the Commission considers a top priority … Astrid as well as the fabrication plant for the manufacture of its fuel”.

Then after that ? What should be done with this very “very hot” irradiated fuel from an Astrid? Areva-La Hague, UP2-800 and UP3 can not handle it.

The 2011 CNE Report (p.14): “… Astrid reactor and a reprocessing pilot that allow to test the different operations related to the recycling of plutonium and americium … Demonstrate that the dissolution of irradiated fuel … with much higher levels of actinides than in PWR fuel is controlled “And in its 2012 report, chapter on Astrid p.13: “Passage to the realization of the project … it is essential to conduct the following actions: – Construction of a reprocessing pilot … “; And CNE 1st page of last report (Nov 2013): “In a tense economic context … In a second stage a reprocessing plant for the fuel Mox irradiated in Astrid”. Yes, what could not go wrong…

In fact the “Astrid project of the CEA” is simply that it wants to reconstructs its entire cycle in brand new.

It would not in any way of any use for the wastes that the nuclear industry of the moment manufactures which are glasses, bitumens and concretes. For proof, for those the government sends to Bure the mobile gendarmes. The CEA needs for its triple project, three handfuls of billions of euros: one for the Melox-Astrid, one for the Astrid reactor and one for the reprocessing-Astrid. The CEA eagerly seeks, and thanks to one of their own, they may have already found a part of it via the “CO2 tax of the IPCC” on the households (Astrid would be “non-carbon”, so “clean”, he-he …https://blogs.mediapart.fr/ano/blog/151116/jean-jouzel-iii-le-collecteur-de-fonds-le-fioul-lourd-et-les-employe-e-s-jetables) But a bundle of billions is needed, And they are also looking for the japanese taxpayers of Fukushima (France wants Japan to share 570 billion yen ASTRID reactor development cost http://mainichi.jp/english/articles/20161022/p2a/00m/0na/005000c).
Reminders :

1, A plutonium 239 dust with a diameter of 1 μm weighs 0.000 000 000 015 gram or 15 picograms. Invisible but quite destructive …

2, Units: Gray (rad) Sievert

The rad (which is mentioned once in the small text of Maurice Eugene ANDRÉ at the head of this post) is an energy unit that has been replaced by a larger unit, the gray, Gy (100 rad = 1 Gy).

Often one speaks in Sievert, Sv, or in milliSievert (mSv, thousandths of Sv). The Sievert is a measure of “damage” (gross translation of the gray on the living). We pass from one to the other by a factor Wr:

Dose in Gy × Wr = dose in Sv

The factor Wr is 1 for the X and gamma radiations. For the alpha radiation (Pu, U, Am …) it was 10, I think it became 20 at least for some. It is also increasing for beta (was 1, an English institute switches to 2 for tritium for example). This means that their deleterious effects were underestimated.

3, Another reminder: For the public the current standard, it is by its definition of a limit between the admissible and the inadmissible, of an added artificial dose (total of all the anthropic exposures, except medical) of 1 mSv / year. It is an arbitrary choice based on the principle that all human activity has consequences.

This value indicates from the official factors that this dose received by 1 million people must produce 50 fatal cancers, 13 serious genetic abnormalities and 10 curable cancers. It is not as one sometimes reads a dose of safety.

 

January 10, 2017 Posted by | radiation | | Leave a comment