US formally withdraws from nuclear treaty with Russia and prepares to test new missile
US formally withdraws from nuclear treaty with Russia and prepares to test new missile
Radiation effects on the “downwinders” and others close to nuclear weapons tests
The fallout of uncertainty in nuclear test communities https://www.hcn.org/articles/nuclear-energy-the-fallout-of-uncertainty-in-nuclear-test-communities
For downwinders of bomb testing, plans for compensation to redress past harms makes for tricky politics. Aug. 2, 2019, The atomic bomb was born in the desert. In the early hours of July 16, 1945, after a spate of bad weather, a 20-kiloton plutonium-based nuke referred to as “the gadget” detonated near Alamogordo, New Mexico. Firsthand testimonies of the test, codenamed Trinity, converge on the uncanny axis of awe and dread. The Manhattan Project’s Chief of Field Operations, General Thomas Farrell, wrote that “the strong, sustained, awesome roar … warned of doomsday and made us feel that we puny things were blasphemous.”

Meanwhile, the National Cancer Institute (NCI) is currently conducting a three-phase study on the diet and lifestyles of mid-century New Mexicans. The models generated in this study may help scientists draw firmer links between present day cancer cases and the Trinity test. In an email, NCI spokesperson Michael Levin confirmed that the results of the study are anticipated to be published in late 2019.
Like other epidemiological studies of its size, the NCI’s study has been expensive to run and frustratingly time-intensive. And time is precisely what many downwinders feel they don’t have. More than 70 years has passed since the Trinity test. Many downwinders have passed away or are battling cancers and other diseases. Over time, it becomes increasingly difficult to demonstrate that a disease was caused by nuclear fallout rather than, say, cigarettes or bad luck.
“No First Use” of nuclear weapons
What Exactly Is Nuclear ‘No First
Use’? Jalopnik, Kyle Mizokami 2 Aug 19, During the Democratic presidential debates this week, candidates wrestledwith a particularly thorny national security issue: whether they would forsake the use of nuclear weapons first in a conflict. This policy, known as No First Use, is the policy of just a handful of the declared nuclear powers.
TEPCO submits decommissioning plan for Onagawa 1

The nuclear disasters that we don’t hear about – The Kyshtym Disaster
5 Unknown Nuclear Disasters: Chernobyl Is Far from the Only One, Chernobyl is not the world’s only nuclear disaster, there are plenty of others to keep you up at night., Interesting Engineering, By Marcia Wendorf, 2 Aug 19
The Kyshtym Disaster
In September 1957, Ozyorsk, Russia was a closed city, built around the Mayak plant which produced plutonium for both nuclear weapons and fuel.
After scrambling to build the Mayak plant between 1945 and 1948, all six of its reactors initially dumped high-level radioactive waste directly into Lake Kyzyltash. When it became contaminated, they moved on to dumping into Lake Karachay, which also became contaminated.
In 1968, the Soviet government disguised the EURT area by creating East Ural Nature Reserve, with access allowed to only authorized personnel. Documents describing the disaster were only declassified in 1989.
On the International Nuclear Event Scale (INES), Kyshtym is rated a 6, making it the third-most serious nuclear accident behind only the Fukushima Daiichi nuclear disaster and the Chernobyl disaster, which are both Level 7
In 1953, workers built a storage facility for liquid nuclear waste, but that waste was being heated by residual decay heat from the nuclear reaction. The coolers around one of the tanks failed, and on September 29, 1957, that tank exploded with the force of between 70 to 100 tons of TNT.
While there were no immediate casualties, the explosion released an estimated 20 MCi (800 PBq) of radioactivity into the air. A plume containing 2 MCi (80 PBq) of radionuclides, primarily caesium-137 and strontium-90, moved toward the northeast and contaminated an area of more than 52,000 square kilometers (20,000 sq miles).
At least 270,000 people lived in that area, which is referred to as the East-Ural Radioactive Trace (EURT).
In an attempt to maintain secrecy, no evacuation was ordered, but a week later, on October 6, 1957, 10,000 people were removed from their homes.
Estimates of the death toll caused by the accident go from 200 to more than 8,000, depending on the study. A 2001 work stated that the accident caused 66 diagnosed cases of chronic radiation syndrome.
Amazingly, it wasn’t until 18 years later, in 1976, that the full scope of the disaster was disclosed by Zhores Medvedev in the publication the New Scientist.
In 1968, the Soviet government disguised the EURT area by creating East Ural Nature Reserve, with access allowed to only authorized personnel. Documents describing the disaster were only declassified in 1989.
On the International Nuclear Event Scale (INES), Kyshtym is rated a 6, making it the third-most serious nuclear accident behind only the Fukushima Daiichi nuclear disaster and the Chernobyl disaster, which are both Level 7…… https://interestingengineering.com/5-unknown-nuclear-disasters-chernobyl-is-far-from-the-only-one
K-19: The Widowmaker Trailer
Scrapping of Fukushima No. 2 nuclear plant a chance to boost reconstruction

The nuclear disasters we don’t hear about – The Windscale Fire
Windscale: Britain’s Biggest Nuclear Disaster – Part 01
5 Unknown Nuclear Disasters: Chernobyl Is Far from the Only One, Chernobyl is not the world’s only nuclear disaster, there are plenty of others to keep you up at night., Interesting Engineering, By Marcia Wendorf, 2 Aug 19
The Windscale Fire
Less than two weeks after Kyshtym, a fire broke out in Unit 1 of the two reactors at the Windscale facility located in what is now known as Sellafield, Cumbria UK.
The two reactors were created because of Britain’s need for an atomic weapon following World War II. Determining that a uranium enrichment plant would cost ten times as much to produce the same number of atomic bombs as a nuclear reactor, the decision was made to build a nuclear reactor that would produce plutonium.
The cores of the reactors were comprised of a large block of graphite, with horizontal channels drilled through it for the fuel cartridges. Each cartridge consisted of a 12-inch-long (30 centimeters) uranium rod encased in aluminum.
The reactor was cooled by convection through a 400-foot (120 m) tall chimney. When Winston Churchill committed the UK to create a hydrogen bomb, the fuel loads at Windscale were modified to produce tritium, but this also meant that the core became hotter.
On the morning of October 10, 1957, the core began to uncontrollably heat, eventually reaching 400 degrees C. Cooling fans were brought in to increase the airflow, but just worsened the problem. It was then that operators realized that the core was on fire.
Workers tried dousing the core first in carbon dioxide, then in water, but both proved ineffective. What finally worked was cutting off air to the reactor building, which starved the fire.
The fire caused the release of radioactive radionuclides across the UK and Europe, including an estimated 740 terabecquerels (20,000 curies) of iodine-131, 22 TBq (594 curies) of caesium-137 and 12,000 TBq (324,000 curies) of xenon-133.
By comparison, the 1986 Chernobyl explosion released far more, and the Three Mile Island accident in 1979 in the U.S. released 25 times more xenon-135 than Windscale, but less iodine, caesium, and strontium. The atmospheric release of xenon-133 by the Fukushima Daiichi nuclear disaster was similar to that released at Chernobyl, and thus, high above what the Windscale fire released.
There were no evacuations of the surrounding area, but it has been estimated that the incident caused 240 additional cancer cases. For a month after the accident, milk coming from 500 square kilometers (190 sq mi) of the nearby countryside was destroyed.
The reactor tank has remained sealed since the accident and still contains about 15 tons of uranium fuel. The reactor core is still slightly warm due to continuing nuclear reactions. It is not scheduled for final decommissioning until 2037. On the International Nuclear Event Scale, Windscale ranks at level 5………. https://interestingengineering.com/5-unknown-nuclear-disasters-chernobyl-is-far-from-the-only-one
ReplyForward
|
Work begins to topple dangerous exhaust stack at Fukushima plant



The nuclear accidents we don’t hear about – Soviet Submarine K-19
5 Unknown Nuclear Disasters: Chernobyl Is Far from the Only One, Chernobyl is not the world’s only nuclear disaster, there are plenty of others to keep you up at night., Interesting Engineering, By Marcia Wendorf, 2 Aug 19
Soviet Submarine K-19
K-19 was one of what the Soviets called their Project 658-class submarines, while NATO called them Hotel-class. They were the first generation of nuclear submarines equipped with nuclear ballistic missiles.
Commissioned on April 30, 1961, K-19 was snake bit from the start. On its initial voyage, on July 4, 1961, it was conducting exercises off the coast of Greenland when suddenly, pressure in the reactor’s cooling system dropped to zero due to a leak.
The emergency SCRAM system immediately inserted the control rods, but due to decay heat, the reactor’s temperature rose to 800 degrees C (1,470 degrees F). The accident released steam containing fission products throughout the ship through the ventilation system.
The captain ordered the ship’s engineering crew to fabricate a new cooling system, but this required them to work within the radioactive area. The jury-rigged cooling water system prevented a complete meltdown of the reactor core.
American warships nearby had picked up K-19’s distress call and offered to help, but K-19’s captain, fearful of giving away Soviet military secrets, refused. Instead, K-19 sailed to meet up with a diesel-powered Soviet submarine. The accident had irradiated K-19’s entire crew, as well as the ship and some of her ballistic missiles.
Within a month, all eight members of the ship’s engineering crew died of radiation exposure. They are Boris Korchilov, Boris Ryzhikov, Yuriy Ordochkin, Evgeny Kashenkov, Semyon Penkov, Nicolai Savkin, Valery Charitonov, and Yuriy Povstyev.
Within the next two years, 15 other sailors died of radiation-related illnesses.
Towed into port, K-19 contaminated a 700 meter (2,300 feet) wide area, and the repair crews who worked on her. Eventually, the Soviet Navy dumped the damaged reactor into the Kara Sea.
The 2002 movie K-19: the Windowmaker, which starred Harrison Ford and Liam Neeson, is based on the K-19 disaster….. https://interestingengineering.com/5-unknown-nuclear-disasters-chernobyl-is-far-from-the-only-one
Atomic Refugee Moms
Documentary film
Eight years after the nuclear disaster in Fukushima, there are still high levels of poverty among mothers who fled the region with their children. Atomic Refugee Moms follows three mothers who struggle to give their children hope for their future.
The nuclear accidents we don’t hear about – The Goiânia Accident
5 Unknown Nuclear Disasters: Chernobyl Is Far from the Only One, Chernobyl is not the world’s only nuclear disaster, there are plenty of others to keep you up at night., Interesting Engineering, By Marcia Wendorf, 2 Aug 19 The Goiânia AccidentIn the 1980s, the Instituto Goiano de Radioterapia (IGR) was a private radiotherapy hospital in Goiânia, Brazil. When it moved to a new facility in 1985, a caesium-137-based therapy unit was left behind. The caesium-137 was encased in a shielding canister made of lead and steel. Legal wrangling prevented the canister from being removed from the facility, and the court posted a security guard to protect the equipment. Unfortunately, that guard was nowhere to be found on September 13, 1987, when two men, Roberto dos Santos Alves and Wagner Mota Pereira, entered the facility and made off with the equipment, placing it in a wheelbarrow and taking it to Alves’s house. There, they began dismantling the equipment, and both immediately began to vomit. The next day, Pereira noticed a burn on his hand that required the amputation of several fingers. Alves soldiered on, piercing the canister with a screwdriver. He noticed the blue light of Cherenkov radiation. Alves’s arm ulcerated and had to be amputated, but before that, he sold the items to a scrapyard owned by Devair Alves Ferreira. Fascinated by the blue glow being emitted, Ferreira carried the items into his house, and over the next three days, he invited his friends and family in to observe the blue glow. Ferreira’s brother brought some of the caesium to his house where he sprinkled it onto a floor. There, his six-year-old daughter, Leide das Neves Ferreira, sat down and ate a sandwich. Eventually, Ferreira’s wife took the caesium to a hospital, and news of the radioactive leak was broadcast on local media. 250 people were found to be contaminated by radiation, with 129 people having internal contamination. Four people would die of radiation sickness including six-year-old Leide, Ferreira’s wife Gabriela, 37, and two employees of Ferreira, Israel Baptista dos Santos, 22, and Admilson Alves de Souza, 18. The Goiânia accident spread significant radioactive contamination throughout the Aeroporto, Central, and Ferroviários districts of Goiânia. Contaminated areas included Alves’s house, Devair Ferreira’s scrapyard which had extremely high levels of radiation, and his brother Ivo’s house. The “NATO Science for Peace and Security Series” bizarrely found radioactive contamination on: The Goiânia accident ranks as a number 5 on the International Nuclear and Radiological Event Scale. A 1990 film about the disaster won several awards at the 1990 Festival de Brasília film festival, and a 1994 episode of the TV series “Star Trek: The Next Generation,” “Thine Own Self,” was inspired by the Goiânia accident. …. https://interestingengineering.com/5-unknown-nuclear-disasters-chernobyl-is-far-from-the-only-one |
|
Decision to Scrap Fukushima Daini 4 Reactors

“Oops”: Manipulated childhood cancer data hides radiation impact, harms public health protection
It is morally wrong to conceal or manipulate data! Doing so can and will “enshrine the withholding of life-enhancing or life-saving treatment for victims of radiation exposure.” It will also hinder current and future studies into the effects of radiation.
July 19, 2019
This article relies heavily on postings at Fukushima Voice version 2e. Revelations and analysis below would be impossible without the painstaking translations and thoughtful discussion Fukushima Voice provides.
As the Fukushima nuclear catastrophe unfolded in March 2011, experts began applying lessons (some poorly learned or incomplete) from other nuclear disasters, primarily Chernobyl. After Chernobyl, it took nearly a decade for official experts to admit what data were revealing: exposure to radioiodine, one of the nuclides released from nuclear power disasters, increases thyroid cancer. Those who were children at the time of their exposure were particularly vulnerable. As radioactive clouds blanketed the areas surrounding the melting Fukushima reactors, officials were conflicted about the application of stable potassium iodide (KI) to keep radioiodine from penetrating the thyroids of members of the public.
Shunichi Yamashita, a doctor who had studied thyroid cancers in the Chernobyl-contaminated areas, expected no impact from radioiodine exposure. Reports differ, however, with some saying that Yamashita was publicly claiming no danger, while secretly telling experts he had serious concern about child thyroid cancer. He encouraged those who may have been exposed to protect themselves against radiation by being in a good mood and laughing. FMU had taken the precautionary measure of distributing KI to its staff members and their children. FMU claimed this was to cajole nervous hospital staff into staying during the initial disaster, rather than to protect their health. The staff, however, was sworn to secrecy regarding this decision. Fukushima Prefecture failed to tell FMU to administer KI to the public. FMU waited for Yamashita to inform the issue and he said taking KI was unnecessary, so many in the public were left unprotected. “Yamashita admitted that he had given incorrect information shortly after the disaster when he advised FMU not to dispense potassium iodide tablets to children.” After he had made his decision, he reportedly looked at the fallout maps and said “Oops”.
In the wake of continuing contamination threat and public concern, the Fukushima Prefectural government tasked FMU with overseeing the Fukushima Health Management Survey (FHMS) of which thyroid ultrasound examinations (TUEs) were to be a part. Oversight committees were formed to issue reports on data collected through the FHMS. Yamashita was put in charge of the FHMS, making those who had claimed there was no danger from radioiodine exposure the ones in charge of researching the results of their mistake. In fact, Yamashita has “commented that the main aim of the Health Survey is to reassure people.”
Later, when Dr. Yamashita stepped down as head of the FHMS (he remains Vice President of FMU), some claimed he was leaving not because he ran the study poorly, but because he failed to communicate properly. (Yamashita is still involved with the study – his name appearing on much of the published research ostensibly based on FMU data.) Yet from the outset, FMU has provided incomplete and misleading thyroid data from the FHMS to the oversight committees, resulting in reports that are confusing, with conclusions that even by the committee’s reckoning are unreliable. Outside researchers have also noticed this poor quality. Despite obvious shortcomings, Fukushima thyroid data are being wielded to alter the way we study radiation’s impact on thyroid, and to downplay the world-wide increases current research is revealing.
Missing and misused data
FMU is keeping some primary clinical and demographic data hidden, even from the oversight committees, despite the committees’ repeated requests that these data be shared. FMU shares analytical results that are derived from this data but these results are often manipulated – such as with comparisons to data from Chernobyl data that have been misrepresented. At the most recent press conference, June 3, 2019, committee members were asked to grade the conclusions of their report based on the information provided by FMU. They graded the report reliability at under 60%, citing lack of dose information and missing cases.
FMU has failed to report all the thyroid surgeries conducted either by it or other facilities. Since childhood thyroid cancers are rare under normal circumstances, missing even one case can skew data results. Further, FMU has changed data presentation so that it is not comparable to previously collected data. This will probably curtail current, independent, ongoing research into any connection between thyroid cancers and radiation exposure.
FMU often uses methodologies for data analysis that are unclear, illogical, and therefore unable to be explained (Makino, in publication) much less replicated. Attempts to correct some of these shortcomings have not fully succeeded. Much of the data uncertainty is only discernible to those with Japanese language skills. The datasets have never been published in their entirety in Japanese and the fact that data are missing has never been officially disclosed in English.
For any health study, the most reliable data come from comparing disease outcomes among those who were exposed to the pollutant in question (in this case radioiodine), to those who were unexposed. Having an unexposed population is especially important when it is hard to know what level people were exposed to. The amount of disease in the unexposed population is considered a baseline, or the amount that would occur in a population naturally. If the amount of a disease, such as thyroid cancer, is increased in the exposed population compared to the unexposed, the pollutant in question may be responsible.
However, FMU is insisting that they can establish thyroid cancer baseline with data collected beginning in late 2011 using exposed populations. At first, researchers said that the number of thyroid cancers discovered between late 2011 through 2013 – dubbed the first round examinations, would determine baseline cases. Researchers are now claiming that true baseline may include cases that were discovered through 2016 when the second round examination was scheduled for completion. This shifting baseline imperils reliability of thyroid data and further calls into question the methodologies of the researchers tasked with assessing health impacts of radiation.
The minimum latency for thyroid cancer, according to the World Trade Center Health Program, is 1 year (in persons under 20 years old) to 2.5 years. These latencies are based, in part, on the National Academy of Sciences findings on low-dose radiation exposure. But FMU researchers are claiming that if any thyroid cancers were discovered between 2011 and 2013 (or now 2016) these cases would not be attributed to radiation. In fact, these cases could have developed or grown faster because of Fukushima radiation exposure according to accepted latency, but FMU would consider them “normal” or “baseline”, in effect hiding the true impacts of exposure.
FMU claims that the increased cases of thyroid cancer found through TUE are probably due to overdiagnosis, implying that these cancers were “quiet” and would have remained clinically hidden had monitoring not occurred. But enough of these cancers had metastasized to other areas of the body that surgical removal was indicated (slide 12) for the vast majority of them. In the absence of screening, these cancers would have been caught later, probably requiring more aggressive treatment, leading to a decreased quality of life.
Thyroid cancer data from pre-Fukushima Japan indicates some differences with the post-Fukushima thyroid cancers in the FHMS. For instance, tumor size at removal was smaller for FHMS cases, yet invasion to other tissues was higher, indicating not only that surgical removal was necessary, but that these post-Fukushima smaller tumors could be more aggressive. The pre-Fukushima data from Japan is a very small sample size, so further research should be done. It should be noted that tumor size and invasiveness from FMU cases most closely resemble not those of pre-Fukushima Japan, but those of Belarus post Chernobyl.
Despite misused and missing data, the committee made comparisons of these data to dose estimates from the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), which are based on deposition of radiocesium. But the deposition pattern of radiocesium does not necessarily mimic where radioiodine travelled, so doses using this method are full of “significant uncertainties” and should probably not be used. The irony is radioidine is a known exposure concern during the initial phase of a nuclear power catastrophe, so direct radioiodine measurements could and should have been taken. If they were taken, they should be used. This does not appear to be the case with radioiodine from Fukushima.
Mishandling of data misleads future research and jeopardizes public health
One FHMS committee member, Toru Takano, makes the highly controversial claim that thyroid cancer in children will eventually become “self-limiting” therefore, current screenings are leading to overdiagnosis and unnecessary surgery because these cancers will stop growing and not cause death. There is no scientific proof that childhood thyroid cancers will “self-limit” even after they start invading other organs. Nor is there scientific support for a subclinical pool of thyroid cancer in children, another claim made by FMU researchers. Following on the overdiagnosis trope, some are now questioning whether screening should also be curtailed because it is too psychologically damaging.
It is no surprise then, that the FHMS thyroid committees continue to debate the usefulness of screening, despite clinical indications that screenings have led to necessary surgical removal of invasive thyroid cancers. Yet international bodies like International Agency for Research on Cancer (IARC) are starting to recommend against systematic thyroid screening after a catastrophe like Fukushima, for fear of overdiagnosis and psychological impact. Additionally, IARC’s report, based on input from Fukushima researchers, recommends screening not begin at doses under 100-500 mGy. This despite studies showing increases of thyroid cancer as low as 25mGy for those exposed as children.
In short, Fukushima thyroid data collected and partially hidden from international researchers is being used to alter internationally accepted radiation exposure recommendations. This is all the more ridiculous since the baseline for thyroid cancer after Fukushima uses people who were exposed to Fukushima radioiodine, rather than using unexposed children, even in the face of unknowable doses.
A revelation that pediatric thyroid cancer increased “in the US 4.43% annually from 1998 to 2013” exposes the need to screen people in the wake of nuclear catastrophes, not backpedal on that responsibility. Researchers concluded that this was a “true increase” (not due to increased surveillance –a claim made by researchers using the Fukushima data as evidence). Such data necessitate recognition that we have been exposed to nuclear pollutants from bomb and power fallout since the 1940’s. Failing to research the impact radiation has already had on our current disease environment makes it impossible to fully understand the compounding damage caused by additional radiological catastrophes like Fukushima.
In truth, we are no longer starting from zero man-made radiation exposure, so the concept of “overdiagnosis” is skirting irrelevance since a portion of our current disease burden already comes from exposure to anthropogenic radiation exposure. Given independent data and research (which we currently lack), one could tease out what part of thyroid cancers Fukushima radioiodine is responsible for. Teasing out the role older radioiodine exposures play in background thyroid cancer levels throughout the decades is more difficult. Commenting on the pediatric thyroid study, Dr. David Goldenberg, an ENT-otolaryngologist, Pennsylvania State University College of Medicine advocates for investigating “whether changes in environmental factors or lifestyle changes are driving part of this increase”. He continues: “it is our role as physicians to protect our patients from complacency and undertreatment. Explaining away thyroid cancers as being subclinical or clinically insignificant is reminiscent of days past when we told our patients: ‘don’t worry, it’s good cancer.’”
Manipulation and concealment of Fukushima thyroid data masks the true impact of radioidine exposure. But it is also beginning to influence the way we study thyroid disease overall, having implications beyond study of Fukushima or Chernobyl. Steps to curb screenings and monitoring are pernicious because they enshrine the withholding of life-enhancing or life-saving treatment for victims of radiation exposure. Further, withholding data from independent researchers will disallow any effort to replicate study conclusions made by FMU and the thyroid committees. This is politics masquerading as authoritative and independent decision-making based on science; in reality, it has no true scientific support and is an attempt to bury the story of radiation’s impact on survivors of Fukushima.
The nuclear accidents we don’t hear about – Chalk River Ontario
5 Unknown Nuclear Disasters: Chernobyl Is Far from the Only One, Chernobyl is not the world’s only nuclear disaster, there are plenty of others to keep you up at night., Interesting Engineering, By Marcia Wendorf, 2 Aug 19
Chalk River Ontario, Canada Incident
On December 12, 1952, there was a power excursion and partial loss of coolant in the NRX reactor at the Chalk River nuclear laboratories. Because of mechanical problems, the control rods couldn’t be lowered into the core, and the fuel rods overheated, resulting in a meltdown of the core.
Just like at Chernobyl, hydrogen gas caused an explosion that blew off the multi-ton reactor vessel seal. Also like at Chernobyl, 4,500 tons of radioactive water was found in the basement of the Chalk River reactor building. During the accident, 10,000 curies or 370 TBq of radioactive material was released into the atmosphere.
Future U.S. president Jimmy Carter, then a U.S. Navy officer, led a team of 13 U.S. Navy volunteers who helped in the cleanup of this disaster.
On the International Nuclear Event Scale, Chalk River is a 5, along with Goiânia, Three Mile Island, and Windscale. https://interestingengineering.com/5-unknown-nuclear-disasters-chernobyl-is-far-from-the-only-one
Everything they ever wanted to learn about nuclear weapons — limitless life
Everything they ever wanted to learn about nuclear weapons Dear Osamu, ICAN and Hiroshima Prefecture are proud to announce the launch of the Hiroshima-ICAN Academy. On July 31st,14 students and young professionals from all over the world began an intensive 8-day program in Hiroshima designed to teach them everything they need to know to become the […]
via Everything they ever wanted to learn about nuclear weapons — limitless life
-
Archives
- February 2023 (94)
- January 2023 (388)
- December 2022 (277)
- November 2022 (336)
- October 2022 (363)
- September 2022 (259)
- August 2022 (367)
- July 2022 (368)
- June 2022 (277)
- May 2022 (375)
- April 2022 (378)
- March 2022 (405)
-
Categories
- 1
- 1 NUCLEAR ISSUES
- business and costs
- climate change
- culture and arts
- ENERGY
- environment
- health
- history
- indigenous issues
- Legal
- marketing of nuclear
- media
- opposition to nuclear
- PERSONAL STORIES
- politics
- politics international
- Religion and ethics
- safety
- secrets,lies and civil liberties
- spinbuster
- technology
- Uranium
- wastes
- weapons and war
- Women
- 2 WORLD
- ACTION
- AFRICA
- AUSTRALIA
- Christina's notes
- Christina's themes
- culture and arts
- Fuk 2022
- Fuk 2023
- Fukushima 2017
- Fukushima 2018
- fukushima 2019
- Fukushima 2020
- Fukushima 2021
- general
- global warming
- Humour (God we need it)
- Nuclear
- RARE EARTHS
- Reference
- resources – print
- Resources -audiovicual
- World
- World Nuclear
- YouTube
-
RSS
Entries RSS
Comments RSS