nuclear-news

The News That Matters about the Nuclear Industry Fukushima Chernobyl Mayak Three Mile Island Atomic Testing Radiation Isotope

Wild boar in Sweden have record radiation levels – legacy of Chernobyl nuclear disaster

Record radiation levels found in Swedish wild boar,  https://www.thelocal.se/20180123/record-radiation-levels-found-in-swedish-wild-boar   The Local,  news@thelocal.se , @thelocalsweden, 23 January 2018

January 24, 2018 Posted by | environment, radiation, Sweden | Leave a comment

Radiation problems at Hanford Plutonium Finishing Plant – 100 workers moved to new offices

100 Hanford workers moving to new offices after radiation confusion, Tri City Herald, BY ANNETTE CARY, acary@tricityherald.com  19 Jan 18, One hundred workers are being moved out of the trailer village of offices at the Hanford nuclear reservation’s Plutonium Finishing Plant.

January 20, 2018 Posted by | radiation, USA | Leave a comment

Long-Term Exposure to Low-Dose Radiation and Cancer: Dr. David Richardson at the Hiroshima Peace Institute (EN & JP)

 

The initiation of the Manhattan project in 1943 marked the emergence of the discipline of health physics and an expansion of research on the health effects of ionizing radiation. The health effects of occupational exposure to radiation were viewed from different perspectives by different members of the Atomic Energy Commission (AEC). There were those with immediate concerns and a focus on issues related to wartime production and health effects which were definite biological changes which are immediately evident or are of prognostic importance to health. Others had an interest in a more general understanding the effects of radiation on human health, including long term and genetic consequences. There were also managerial concerns, which persist today; Stafford Warren, medical director of the program, encouraged health research to help strengthen the government’s interest in case of lawsuits or demands for workers’ compensation. These concerns motivated a large scale epidemiological program of research on nuclear workers. Beginning in the mid-1980’s, numerous publications on cancer among workers at nuclear facilities appeared, mostly in the US and UK. Risk estimates from individual studies were uncertain, with wide confidence intervals; and, positive associations between radiation and cancer were observed in some, but not all cohorts. To summarize results across studies and improve statistical precision, pooling projects were undertaken. This lecture reviews the history of these pooled studies and then presents results from the most recent, largest, and most informative of these analyses, known as INWORKS. This is a combined study of 308,297 nuclear workers from the United Kingdom, France, and the United States of America. Quantitative results are presented and the strengths and limitations of INWORKS are discussed. (Lecture at Hiroshima Peace Institute, 30 November 2017)

January 19, 2018 Posted by | radiation | , , , | Leave a comment

The Bioaccumulation of contamination in plankton

Capture du 2018-01-18 12-01-02.png

 

Quote (emphasis added) “Page 59. The problem of radioactive particles falling into the ocean raises the question of their availability to this portion of the biosphere. Plankton normally found in sea water are consumed in large quantities by fish.
 
These plankton concentrate mineral elements from the water, and it has been found that radioactivity may be concentrated (Page 60) in this manner by as much as a thousand fold. Thus, for example, one gram of plankton could contain a thousand times as much radioactivity as a gram of water adjacent to it. The radioactivity from these plankton which form a portion of fish diet tends to concentrate in the liver of the fish, and, if sufficiently high levels of contamination are encountered, could have a marked effect upon the ecology of an ocean area.
 
end quote

January 18, 2018 Posted by | radiation | , , | Leave a comment

How the science of radiation protection was subverted to protect nuclear bombs and nuclear power

 

From Richard Bramhall

Low Level Radiation Campaign

This article was originally written for Radioactive Times in 2008. I didn’t set out to write the whole history of radiation protection – just to highlight the turning point when the bogus concept of absorbed dose was foisted on the world.

The nonsense of Absorbed Dose

Absorbed doses of ionising radiation are defined as an average of the energy that is transferred into large volumes of body tissue. This approach is valid for considering external exposures, like X-rays or natural gamma (cosmic rays) but not for situations where radioactive substances inside the body irradiate microscopic volume of tissue selectively. Particles of Uranium and Plutonium are examples; the range of their alpha emissions is so tiny that all the energy is concentrated into a few hundred cells. Some call this kind of situation “pinpoint radiation”. Using absorbed dose to assess the potential health damage is like a doctor examining a child whose skin is covered with small red marks.

Now look, Mrs. Smith, I’m a doctor and I’m telling you even if your lodger does stub out his cigarette on little Nelly’s tummy there’s no problem because she absorbs very little energy from it. You give her a far bigger dose when you put in her a nice warm bath.

The trick was pulled in the depths of World War 2, subverting the science of radiation protection in order to protect the Manhattan Project and the A-bomb; it has served to protect the nuclear industry ever since.

Radium autopsies and internal risk standards

Until the 1920s the main focus of radiation protection was external X-rays, but the Radium dial painters’ scandal made it obvious that internal effects needed specific investigation. This led to new standards determined by looking at the actual effects of radium in the dissected tissues of people.

Radium is produced by the radioactive decay of natural Uranium. Its own radioactive decay emits alpha particles. Unlike X-rays and gamma rays, alphas have very little penetrating power so they are only hazardous once they’re inside the body. Even then they don’t travel far but the downside is that all their energy is deposited in a very small volume of cells.

From the earliest years of the 20th century luminous Radium paint was applied to the faces of clocks, watches and compasses to make them glow in the dark. World War 1 boosted demand and through the following decades hundreds of girls and women were employed to paint dials and pointers with various brands of paint – Undark, Luna and Marvelite. They would routinely put the tips of their paint brushes between their lips to obtain a fine point for the trickier numerals. By 1923 it was clear that the Radium they thus ingested was causing dreadful, agonising and frequently fatal illnesses.

Radium mostly lodges in bone, so the diseases affected the blood-forming function of the women’s bone marrow, leading to anaemia. Those with higher body burdens had ulcers and their bones were weakened to the point where vertebrae collapsed and legs would break spontaneously. The first deaths directly attributed to Radium Necrosis came in 1925. The inventor of the Undark brand died like his workers, his bone marrow destroyed and his hands, mouth and jaw bones eaten away. Court cases, compensation payments and improved workplace practices followed (a ban on licking brushes was the first) but for a decade and a half there were no mandatory exposure limits.

By 1941 America was once more tooling up for industrialised warfare and the government was ordering large numbers of luminized instruments. By that time the global total of Radium extracted from the earth’s crust was only 1.5 kilograms but, already, the deaths of more than a hundred people were attributable to its processing and use. Officials insisted that safety standards be devised, including a tolerance limit for internal Radium. A committee of the National Bureau of Standards looked to a post mortem study of Radium dial painters and people who had been exposed to Radium through medical treatments. They saw that there were detectable injuries in all the bodies which contained a total of 1.2 micrograms of Radium but no injuries were discernible in those containing 0.5 micrograms or less. The committee settled on 0.1 micrograms as a cut-off. The history books show they knew this was a highly subjective stab in the dark.

Since Radium decays to Radon gas officials were able to use Radon as an indicator for metering. From then on, Radium workers were required to breathe into an ion chamber which detected the radioactive decays of Radon and its own daughter, Polonium. An immediate change of occupation was recommended as soon as the level indicated that a worker’s body contained more than 0.1 micrograms of Radium.

Plutonium takes centre stage

World War 2 was midwife to the principle of nuclear fission, a completely novel substance – Plutonium – and the possibility of a Plutonium-powered bomb. The Manhattan Project was set up to make Plutonium for the bomb in secret and in near total ignorance of its effects on health. It was known to be an alpha emitter so, for expediency, the standards for Radium were extended to Plutonium, modified by animal experiments comparing the effects of the two substances.

All this – both the Radium standard and the Plutonium standard derived from it – was primitive science which had no way of detecting subtle lesions and cancers which may take decades to appear. The discovery of the double helix structure of DNA was still a decade away and for another 50 years no-one suspected the existence of epigenetic effects (genomic instability and the bystander effect). So the safety standards were unlikely to reflect long-term health effects but they did have the huge philosophical advantage of being rooted in reality; the Radium researchers had followed the essentially scientific principle of looking for a relationship between cause and effect. Maybe this was because they were medical practitioners, campaigners for workers’ rights and newspapers eager for the human interest angle on any story. Maybe their investigation enjoyed some liberty because the dial painting industry was owned privately, rather than by any government, and because at that time the fate of the “free” world did not seem to hang on the outcome.

Exit Medicine, stage left; Enter Health Physics, stage right

By 1944 everything had changed. Plutonium was being produced in significant amounts and any potential it might have to kill its own workforce now affected a top-level policy funded by a bottomless budget with the imperative of building the bomb before Stalin could. More crucially for the scientific principles of radiological safety, physicians were no longer in charge, but physicists.

The agent of change was a British physicist, Herbert Parker, head of radiation protection at the Manhattan Project. His earlier career in British hospitals had made him familiar with X-rays and a kind of therapy that used Radium as an external source, confining it in tubes and placing it carefully to irradiate cancerous tissues. (This medical application had been tried as early as 1904, only six years after Radium was discovered. In marked contrast to the dial painters’ problems, it didn’t involve Radium becoming inextricably mingled with a patient’s bones.) Parker had a physics-based view; radiation was a single phenomenon, whether it came from an X-ray machine or a speck of Plutonium. As with light, where the physicist isn’t too interested in whether the source is a light bulb or the sun, Parker was concerned with how much energy the radiation delivered to the tissue of interest. The language here is of ergs, from the Greek for work. It is defined in dynes, the Greek for force; the units are physical – movement, velocity, grammes of mass, centimetres of length, seconds of time.

Parker was one of the first to call himself a Health Physicist. In his world there was no call for a bedside manner.

The internal/external Switcheroo: Act 1

Using his physicist’s approach, Parker shifted the focus from direct investigation of the effects of specific substances onto a new concept – radiation dose – which he could apply to radiation from any source and all sources, providing a way to assess workers’ total exposure to all the novel nuclides the Manhattan Project was now creating. He defined a unit of dose in ergs per gramme of tissue and called it the Roentgen Equivalent Physical, or rep. Its very name betrays the mindset; Wilhelm Roentgen was the discoverer of X-rays (for a long time they were called Roentgen rays). The source of X-rays is always outside the body, so we can see the understanding of dose, and hence risk, was now to be based on an external paradigm.

The first limit for Plutonium in the body based on Parker’s dose model was set at 0.01 reps per day, a quantity which exactly matched the energy deposition from the old tolerance limit of 0.1 microgramme of Radium. No change there then. What did change was that instead of the empirical scientific inquiry based on actual tissue damage and instead of the tentative subjectivity of the 1941 Standards Bureau Committee’s decision on a Radium level, the new model gave an impression of mathematical precision, certainty and universal applicability. This was the new, square-jawed and confident nuclear era where bombs of unimaginable power would biff the Red Menace into oblivion and unlimited atomic energy would fuel everything in a world of peace and plenty.

Internal/external Switcheroo: Act 2

Any risk model needs two types of data – for exposure and for effect. Unfortunately, there were no reliable data even for X-rays despite 50 years’ experience. There was too much variability in the machines and the conditions in which they were used; doses were largely unknowable and many of the long-term effects had yet to emerge. But after 1945 the surviving people of Hiroshima and Nagasaki provided the authorities with a fresh opportunity. Funded and controlled by America, data on the survivors’ health was gathered (as it still is) in what have become known as the Life Span Studies or LSS.

A full analysis of the flaws in the LSS is beyond me. As far as studying internal radioactivity is concerned the flaw is fatal; the control population providing the base-line of expected rates of disease, to be compared with disease in the exposed population, was recruited from the bombed cities themselves – they had either been outside the city when the bomb fell, or in some other way were shielded from the flash of the explosion. The “exposed” population consisted of people who had been in the open and so received a large dose of external gamma rays. But both groups ingested and inhaled just as much fallout as each other, so the LSS are totally silent on internal radiation. The only difference between them was the external irradiation. LSS nevertheless is the basis of radiation protection standards all over the world to this day for both external and internal.

Internal/external Switcheroo: Act 3

The LSS were not begun until 1950 (another flaw, obviously, because by then many of the most susceptible people had died) but already, in 1948, America’s Atomic Energy Commission had pressed the National Council for Radiation Protection (NCRP) to develop safety standards for the growing nuclear industry. An especial concern was the quantity of novel elements which, being alpha emitters, would present internal hazards. Separate sub-committees addressed internal and external radiation. The external sub-committee completed its work quite quickly but the other was slowed down by the many complexities of internal contamination. The problem is that physicists don’t have much clue about where radioactive elements go once they are inside the body, how long they stay there or what biological damage they’re doing. Impatient with the delays, NCRP’s Executive closed down the internal committee in 1951 and stretched the report of the external committee to cover internal radiation. Karl Z. Morgan, chair of the internal radioactivity sub-committee, refused to agree that internal could be dealt with like external. For the rest of his life he was a critic of official radiological protection bodies –

I feel like a father who is ashamed of his children.

Internal/external Switcheroo: Act 4

In 1950, American influence revived the International X-ray and Radium Protection Committee (IXRPC), which had been dormant during the war. In fact only two of its members were still alive and one of those was an American who was Chairman of the American NCRP. But needs must, and an international body would probably look more credible than a unilateral American one, so IXRPC was reborn as the International Commission on Radiological Protection (ICRP). In reality ICRP was just an overseas branch of the NCRP and in 1953 it adopted the NCRP report wholesale.

Epilogue

An epilogue is a short speech at the end of a play. In the case of this drama it’s hard to be brief. I’ll give two snapshots – one is global, the other is a family tragedy.

Chernobyl

In 1986 the accident at Chernobyl spread fallout round the whole planet and millions of people inhaled and ingested it. Thousands of published reports from Russia, Belarus, the Ukraine, Greece, Germany, Britain, and even as far west as the Californian coast show a wide range of post-accident health effects not predicted by ICRP’s model. In 2007 ICRP adopted new Recommendations in which there is a single reference to one study of Chernobyl. It’s a paper on thyroid cancer. They cite it for the sole purpose of establishing that it’s so hard to be sure what doses the patients had got from the fallout that the accident can tell us nothing useful. ICRP clings so hard to the dogma of dose that they are willing to rob the human race of the chance to learn about the results of the worst ever reactor accident (I wrote this before Fukushima).

Malcolm Pattinson

This is one among millions of similar stories, but enough detailed information has leaked out to let us learn from it.

In May 2007 The Guardian (linked here or here) and The Times carried reports of a Cumbrian woman’s shock at finding out what had happened to her father 36 years earlier.

Angela Christie’s father, Malcolm Pattinson, died of leukaemia in 1971. He was 36 years old and he worked at Sellafield. Or he had worked there; the Times reported that by the time he died he had been off work for 18 months because his wife feared for his health. As soon as he was dead his employers made frantic efforts to obtain organs and bones from his body. The local coroner, doctors and solicitors were involved but the family was neither consulted nor informed. In 1979, after a long battle during which the employers admitted liability, an out-of-court settlement brought Mr. Pattinson’s widow and daughters compensation payments variously reported as £52000 and £67000.

All this happened when Malcolm’s daughter Angela was in her teens. She grew up and went to work at Sellafield like her father. She married and had three children of her own. Then she read in a newspaper that her father had been one of many men in the industry whose organs had been harvested for radiological research. She asked for the legal papers and received several boxes full.

They’re quite shocking, which may indicate why Mr Pattinson’s employers were so interested in snatching his body parts. His liver contained 673 times as much Plutonium as the average for a sample of Cumbrians who had not worked in the nuclear industry and his lungs had well over 7000 times as much. His liver had 53 times the amount of Plutonium found in the most contaminated of the nuclear workers in other reports and his lungs had 42 times as much. Mr. Pattinson’s body burden was far greater than any other worker data I have seen. I conclude that he had either been involved in an accident or had been working in an unacceptably dirty environment. Either would be a scandal, but the far wider scandal is that the industry and the government would not see even those monstrous levels as a likely cause of his death.

From the data published in the Guardian I calculated the radiation dose Mr. Pattinson received from his body burden of Plutonium. Using the same methods as the ICRP I worked out the annual dose at 26 milliSieverts. That’s about ten times the usual (bogus) yardstick of natural background but it would have been nothing very remarkable in the early 1970s. Even today, when standards are more cautious, employers would still not be breaking the law by exposing a worker to such a dose so long as it wasn’t for more than one year in five.

ICRP’s risk estimates would not predict that a 26mSv dose would cause Mr. Pattinson’s leukaemia, in just the same way as they do not predict the cluster of childhood leukaemia at Seascale, next door to Sellafield — the doses are far too low. According to ICRP, if Mr. Pattinson was going to die of any cancer, the chance that it would be caused by the Plutonium in his body was only 1.3 in a 1000.

To the person in the street the idea that fatal leukaemia in a young man is 770 times more likely to be caused by bad luck, bad genes, bad diet, smoking, a virus or an act of God than by the acts of an employer who contaminated him heavily with a bone-seeking, alpha-emitting radionuclide may seem insane. It is insane. It is insane in the way Dr. Strangelove was insane; the logic is impeccable but the theoretical premises are wrong. The good news is that growing numbers of scientists are recognising that ICRP is in error. These include Jack Valentin, the man who recently retired as ICRP’s Scientific Secretary.

Richard Bramhall
Low Level Radiation Campaign

Source: http://www.llrc.org/switcheroo.htm

 

January 5, 2018 Posted by | radiation | | Leave a comment

Radiation Dose Is Meaningless

Dose is meaningless.jpg

 

In other words, where hot or warm particles or Plutonium or Uranium are located in body tissue or where sequentially decaying radionuclides like Strontium 90 are organically bound (e.g. to DNA) “dose” means nothing.
This is massively significant. Official radiation risk agencies universally quantify risk in terms of dose. If it means nothing the agencies know nothing and can give no valid advice.
Their public reassurances fall to the ground. They can no longer compare nuclear industry discharges with the 2 millisieverts we get every year from natural radiation, or the cosmic rays you’d receive flying to Tenerife for a holiday.
 
See this link for supporting quotes from the International Commission on Radiological Protection, Institut de Radioprotection et de Securite Nucleaire, the European Committee on Radiation Risk, the UK Department of Health, ICRP again (2009), and the Swedish Radiation Safety Authority. http://www.llrc.org/llrc/wobblyscience/subtopic/dosemeaningless2.htm
 
See this link for an account of how, when and why the world’s radsafers came to have an unscientific view. http://www.llrc.org/switcheroo.htm
 
 
Dose is meaningless
… emerging consensus
[This page from November 2006 is now updated with this new link to extracts from ICRP Publication 103 (the 2007 Recommendations) but its content otherwise remains unchanged. At the foot there is recent material on ICRP’s position.] http://www.llrc.org/llrc/wobblyscience/subtopic/dosemeaningless4.htm
The 2005 Recommendations of the International Commission on Radiological Protection: Draft for Consultation were published in late 2004. The final version has not been published at the date of writing (early November 2006) and ICRP tells us publication has in fact been set back by the IRSN’s report on the European Committee on Radiation Risk (ECRR).
Consultation on a second draft closed in the summer. Our responses can be seen on the ICRP site
The ICRP 2004 draft contains many statements revealing the incomplete state of knowledge of radiation risk. Many of them have been watered down in the 2006 draft or have disappeared altogether.
Here we reproduce extracts from the 2004 draft which confirm the validity of our long-standing concerns about heterogeneity of energy distribution. The ICRP’s response to heterogeneity is to employ assumptions. Most are individually questionable and when taken together, as they must be, they are simply not acceptable as a system of radiation protection. The upshot is that “dose” is an effectively meaningless term yet the industry’s regulators have no other terms with which to assess and quantify risks. Reassurances about “trivial doses” are revealed as empty.
“3.2. Summary of health effects caused by ionising radiation
(37) The relationship between radiation exposures and health effects is complex. The physical processes linking exposure and doses in human tissues involve energy transport at the molecular level. The biological links between this energy deposition and the resulting health effects involve molecular changes in cells. In Publication 60 (ICRP, 1991) , the Commission recognised that the gross (macroscopic) quantities used in radiological protection omitted consideration of the discontinuous nature of the physical and biological processes of ionisation. However, it concluded that their use was justified empirically by the observation that the gross quantities (with adjustments for different types of radiation) correlate reasonably well with the resulting biological effects. It further recognised that more use might eventually be made of other quantities based on the statistical distribution of events in a small volume of material, corresponding to the dimensions of biological entities such as the nucleus of the cell or its DNA. Meanwhile, for practical reasons, the Commission continues to use the macroscopic quantities.
[…]
3.3. Absorbed dose in radiological protection
(41) A particular feature of ionising radiations is their discontinuous interaction with matter. The related probabilistic nature of energy depositions results in distributions of imparted energy on a cellular and molecular level that are very heterogeneous at low doses. […]
(42) […] At the low doses generally of concern in radiological protection, the fluctuation of energy imparted can be substantial between individual cells and within a single hit cell. This is the case particularly for densely ionising radiations such as alpha-particles and charged particles from neutron interactions.
[…]
(44) Absorbed dose is defined based on the expectation value of the stochastic quantity e, energy imparted, and therefore does not consider the random fluctuation of the interaction events. It is defined at any point in matter and, in principle, is a measurable quantity, i.e. it can be determined experimentally and by computation. The definition of absorbed dose has the scientific rigour required for a fundamental quantity. It takes implicitly account of the radiation field as well as of all of its interactions inside and outside the specified volume. It does not, however, consider the atomic structure of matter and the stochastic nature of the interactions.
[…]
(46) For densely ionising radiation (charged particles from neutrons and alpha-particles) and low doses of low LET radiation, the frequency of events in most cells is zero, in a few it is one and extremely exceptionally more than one. The value of energy imparted in most individual cells is then zero but in the hit cells it will exceed the mean value by orders of magnitude. These large differences in the energy deposition distribution in microscopic regions for different types (and energies) of radiation have been related to observed differences in biological effectiveness or radiation quality.
(47) In the definition of radiological protection quantities no attempts are made to specify these stochastic distributions at a microscopic level. Even the quality factor used in the definition of operational quantities is dependent on LET only which also is a non stochastic quantity. Instead a pragmatic and empirical approach has been adopted to take account of radiation quality differences – and therefore implicitly also of the differences in distributions of energy imparted in microscopic regions – by defining radiation weighting factors. The selection of these factors is mainly a judgement based on the results of radiobiological experiments.
3.3.2. Radiological protection quantities: Averaging of dose
(48) While absorbed dose is defined to give a specific value (averaged in time) at any point in matter, averaging of doses over larger tissue volumes is often performed when using the quantity absorbed dose in practical applications, as in radiological protection. It is especially assumed for stochastic effects at low doses that such a mean value can be correlated with the risk of a detriment to this tissue with sufficient accuracy. The averaging of absorbed dose and the summing of mean doses in different organs and tissues of the human body, as given in the definition of all the protection quantities, is only possible under the assumption of a linear dose-response relationship with no threshold (LNT). All protection quantities rely on these hypotheses.
(49) Protection quantities are based on the averaging of absorbed dose over the volume of a specified organ or tissue. The extent to which the average absorbed dose in an organ is representative of the absorbed dose in all regions of the organ depends on a number of factors. For external radiation exposure, this depends on the degree of penetration of the radiation incident on the body. For penetrating radiation (photons, neutrons) , the absorbed dose distribution within a specified organ may be sufficiently homogeneous and thus the average absorbed dose is a meaningful measure of the absorbed dose throughout the organ or tissue. For radiation with low penetration or limited range (low-energy photons, charged particles) as well as for widely distributed organs (e.g. bone marrow) exposed to non-uniform radiation flux, the absorbed dose distribution within the specified organ may be very heterogeneous.
(50) For radiations emitted by radionuclides residing within the organ or tissue, so-called internal emitters, the absorbed dose distribution in the organ depends on the penetration and range of the radiations and the homogeneity of the activity distribution within the organs or tissues. The absorbed dose distribution for radionuclides emitting alpha particles, soft beta particles, low-energy photons, and Auger electrons may be highly heterogeneous. This heterogeneity is especially significant if radionuclides emitting low-range radiation are deposited in particular parts of organs or tissues, e.g. plutonium on bone surface or radon daughters in bronchial mucosa and epithelia. In such situations the organ-averaged absorbed dose may not be a good dose quantity for estimating the stochastic damage. The applicability of the concept of average organ dose and effective dose may, therefore, need to be examined critically in such cases and sometimes empirical and pragmatic procedures must be applied. ICRP has developed dosimetric models for the lungs, the gastrointestinal tract and the skeleton that take account of the distribution of radionuclides and the location of sensitive cells in the calculation of average absorbed dose to these tissues.
3.3.3. Radiation weighted dose and effective dose
(51) The definition of the protection quantities is based on the mean absorbed dose …
It seems perverse that having admitted so many flaws in the concept of absorbed dose ICRP simply continues to use it.
The 1991 assertion (see ICRP para. 37 above) that the use of macroscopic quantities is justified empirically is not acceptable. In the ensuing 15 years developments in cell biology and epidemiology, particularly following Chernobyl, have rendered it unsafe. The European Committee on Radiation Risk (ECRR) has recently developed weighting factors to compensate for some of the shortcomings of the ICRP approach. IRSN’s 2005 report on ECRR states: http://www.euradcom.eu/2005/irsn%20rapport%20ecrr-en.pdf
“Various questions raised by the ECRR are quite pertinent and led IRSN to analyze this document with a pluralistic approach.
a. Besides natural and medical exposures, populations are basically undergoing low dose and low dose rate prolonged internal exposures. But the possible health consequences under such exposure conditions are ill-known. Failing statistically significant observations, the health consequences of low dose exposures are extrapolated from data concerning exposures that involve higher dose rates and doses. Also, few epidemiologic data could be analyzed for assessing inner exposure effects. The risks were thus assessed from health consequences observed after external exposure, considering that effects were identical, whether the exposure source is located outside or inside the human body. However, the intensity, or even the type of effects might be different.
b. The pertinence of dosimetric values used for quantifying doses may be questioned. Indeed, the factors applied for risk management values are basically relying on the results from the Hiroshima and Nagasaki survivors’ monitoring. It is thus not ensured that the numerical values of these factors translate the actual risk, regardless of exposure conditions, and especially after low dose internal exposure.
c. Furthermore, since the preparation of the ICRP 60 publication, improvements in radiobiology and radiopathology, or even in general biology, might finally impair the radiation cell and tissue response model applied to justify radioprotection recommendations. It was thus justified to contemplate the impact of such recent observations on the assessment of risk induced by an exposure to ionizing radiation.”
IRSN’s report concludes:
“The phenomena concerning internal contamination by radionuclides are complex because they involve numerous physico-chemical, biochemical and physiological mechanisms, still ill-known and thus difficult to model. Due to this complexity, the behaviour of radionuclides in the organism is often ill described and it is difficult to accurately define a relationship between the dose delivered by radionuclides and the observed consequences on health. This led the radioprotection specialists to mostly use the dose/risk relationships derived from the study of the Hiroshima/Nagasaki survivors, exposed in conditions very different from those met in the cases of internal contaminations.
This fact raises numerous questions, which should be considered with caution because a wide part of the public exposure in some areas of the world is due to chronic internal contaminations and very few data concern these situations.
[…] the questions raised by the ECRR are fully acceptable, … ”
and
“… we do not possess, in the current state of knowledge, the elements required to improve the existing radioprotection system.”
We realise that we are inviting the rejoinder that IRSN also says:
[however] “the fact is that the [ECRR’s] arguments stated to justify this doctrine modification are not convincing, as the demonstration as a whole does not meet the criteria of a strict and consistent scientific approach.”
and
“the existing radioprotection system corresponds to the best tool being available at present for protecting human from the deleterious effects of ionizing radiations.”
and
“… a significant improvement of the radioprotection system in the field of internal contamination [can be] conceivable only by development of studies and research. ”
See this link for ECRR’s response to various points made by IRSN, and for the IRSN report itself. http://www.euradcom.eu/2005/irsn.htm
IRSN’s statements are a bizarre double standard; they have agreed with ECRR’s criticisms of the ICRP system, which on that basis can itself be described as “not meet[ing] the criteria of a strict and consistent scientific approach” (as IRSN demands of ECRR). IRSN’s subsequent call for more research may be only what is expected of scientists, but such research would take years. Policy makers and stakeholders engaged in decommissioning have to make decisions now.
CERRIE: DOSE IS “MEANINGLESS”
… There are important concerns with respect to the heterogeneity of dose delivery within tissues and cells from short-range charged particle emissions, the extent to which current models adequately represent such interactions with biological targets, and the specification of target cells at risk. Indeed, the actual concepts of absorbed dose become questionable, and sometimes meaningless, when considering interactions at the cellular and molecular levels.
from CERRIE (Government’s Committee Examining Radiation Risks of Internal Emitters) Majority Report Chapter 2 Risks from Internal Emitters Part 2 paragraph 11. See http://www.cerrie.org for full report.
See this site for the Minority Report http://www.llrc.org/wobblyscience/subtopic/cerrie.htm
 
And the Department of Health’s Radiation Protection Research Strategy July 2006 – could be LLRC’s shoppping list. http://www.llrc.org/wobblyscience/subtopic/dosemeaningless3.htm
 
ICRP throws in the towel
At a meeting in Stockholm, 22 April 2009, Dr Jack Valentin, Scientific Secretary Emeritus of the ICRP admitted that ICRP’s risk model could not be applied to post-accident exposures because the uncertainties were two orders of magnitude. (see transcript) http://www.llrc.org/llrc/health/subtopic/icrpabdicates.htm
The next day, Deputy Director of Strålsäkerhetsmyndigheten, Carl-Magnus Larsson also said the ICRP model could not be used to predict the health consequences of accidents. He added that for elements like Strontium and Uranium which bind to DNA national authorities would have the responsibility to assess the risks. Another SRM member said that the Secondary Photoelectron Effect was well recognised, also that in 1977 the ICRP had considered a weighting factor ”n” for elements which bind to DNA but had not implemented it.

 

January 5, 2018 Posted by | radiation | , , | Leave a comment

USA nuclear tests – a hidden weapon against its own people – radioactive milk

Five men at atomic ground zero

RADIOACTIVE MILK US nuclear tests killed far more civilians than we knew, Quartz, https://qz.com/1163140/us-nuclear-tests-killed-american-civilians-on-a-scale-comparable-to-hiroshima-and-nagasaki/21 Dec 17 

Tim Fernholz When the US entered the nuclear age, it did so recklessly. New research suggests that the hidden cost of developing nuclear weapons were far larger than previous estimates, with radioactive fallout responsible for 340,000 to 690,000 American deaths from 1951 to 1973.

The study, performed by University of Arizona economist Keith Meyersuses a novel method (pdf) to trace the deadly effects of this radiation, which was often consumed by Americans drinking milk far from the site of atomic tests.

From 1951 to 1963, the US tested nuclear weapons above ground in Nevada. Weapons researchers, not understanding the risks—or simply ignoring them—exposed thousands of workers to radioactive fallout. The emissions from nuclear reactions are deadly to humans in high doses, and can cause cancer even in low doses. At one point, researchers had volunteers stand underneath an airburst nuclear weapon to prove how safe it was:

The emissions, however, did not just stay at the test site, and drifted in the atmosphere. Cancer rates spiked in nearby communities, and the US government could no longer pretend that fallout was anything but a silent killer.

The cost in dollars and lives

Congress eventually paid more than $2 billion to residents of nearby areas that were particularly exposed to radiation, as well as uranium miners. But attempts to measure the full extent of the test fallout were very uncertain, since they relied on extrapolating effects from the hardest-hit communities to the national level. One national estimate found the testing caused 49,000 cancer deaths.

Those measurements, however, did not capture the full range of effects over time and geography. Meyers created a broader picture by way of a macabre insight: When cows consumed radioactive fallout spread by atmospheric winds, their milk became a key channel to transmit radiation sickness to humans. Most milk production during this time was local, with cows eating at pasture and their milk being delivered to nearby communities, giving Meyers a way to trace radioactivity across the country.

The National Cancer Institute has records of the amount of Iodine 131—a dangerous isotope released in the Nevada tests—in milk, as well as broader data about radiation exposure. By comparing this data with county-level mortality records, Meyers came across a significant finding: “Exposure to fallout through milk leads to immediate and sustained increases in the crude death rate.” What’s more, these results were sustained over time. US nuclear testing likely killed seven to 14 times more people than we had thought, mostly in the midwest and northeast.

A weapon against its own people

When the US used nuclear weapons during World War II, bombing the Japanese cities of Hiroshima and Nagasaki, conservative estimates suggest 250,000 people died in immediate aftermath. Even those horrified by the bombing didn’t realize that the US would deploy similar weapons against its own people, accidentally, and on a comparable scale.

And the cessation of nuclear testing helped save US lives—”the Partial Nuclear Test Ban Treaty might have saved between 11.7 and 24.0 million American lives,” Meyers estimates. There was also some blind luck involved in reducing the number of poisoned people: The Nevada Test Site, compared to other potential testing facilities the US government considered at the time, produced the lowest atmospheric dispersal.

The lingering affects of these tests remain, as silent and as troublesome as the isotopes themselves. Millions of Americans who were exposed to fallout likely suffer illnesses related to these tests even today, as they retire and rely on the US government to fund their health care.

“This paper reveals that there are more casualties of the Cold War than previously thought, but the extent to which society still bears the costs of the Cold War remains an open question,” Meyers concludes.

December 22, 2017 Posted by | radiation, Reference, USA, weapons and war | 3 Comments

Remembering the radium girls – pioneers in radiation safety awareness

The legacy of the Radium Girls lives on through the ripples that their deaths created in labor law and our scientific understanding of the effects of radioactivity.
“Almost everything we know about radiation inside the human body, we owe to them,”
Radium Girls: The dark times of luminous watches

Jacopo Prisco, CNN  20th December 2017  A century ago, glow-in-the-dark watches were an irresistible novelty. The dials, covered in a special luminous paint, shone all the time and didn’t require charging in sunlight. It looked like magic.
One of the first factories to produce these watches opened in New Jersey in 1916. It hired about 70 women, the first of thousands to be employed in many such factories in the United States. It was a well-paid, glamorous job.
For the delicate task of applying the paint to the tiny dials, the women were instructed to point the brushes with their lips. But the paint made the watches glow because it contained radium, a radioactive element discovered less than 20 years earlier, its properties not yet fully understood. The women were ingesting it with nearly every brushstroke.
They became known as the “Radium Girls.”.

A miracle cure

Radium was discovered by Nobel laureate Marie Curie and her husband Pierre in 1898. It was quickly put to use as a cancer treatment.
Related:

The color purple: How an accidental discovery changed fashion forever

“Because it was successful, it somehow became an all-powerful health tonic, taken in the same way as we take vitamins today — people were fascinated with its power,” said Kate Moore, author of “The Radium Girls,” in a phone interview………

A slow killer

When ingested, radium is particularly dangerous: “Chemically, it behaves very much like calcium,” said Jorgensen. “Since the body uses calcium to make bone, ingested radium is mistaken for calcium and gets incorporated into bone. So the major health risk of ingesting radium is radiation-induced bone necrosis and bone cancers. How soon they develop depends upon the dose, but at the very high doses that the Radium Girls were exposed to, just a few years.”
The luminous paint, which worked by converting the radiation into light through a fluorescent chemical, was one of the most successful radium-based products. By putting the brushes in their mouths, the Radium Girls were especially at risk — so why did they do it? “Because it was the easiest way to get a fine point on the brush, to paint on numbers as small as a single millimeter in width,” said Moore.
But the girls didn’t embrace this technique blindly. “The first thing they asked was (whether) the paint was harmful, but the managers said it was safe, which was the obvious answer for a manager of a company whose very existence depended on radium paint.”

Not all that glitters

When the luminous watches grew fashionable in the early 1920s, the world was already becoming aware of the risks of radioactivity. But radiation poisoning isn’t immediate, so years went by before any of the workers developed symptoms…….

Radium jaw

In the early 1920s, some of the Radium Girls started developing symptoms like fatigue and toothaches. The first death occurred in 1922, when 22-year-old Mollie Maggia died after reportedly enduring a year of pain. Although her death certificate erroneously stated that she died of syphilis, she was actually suffering from a condition called “radium jaw.” Her entire lower jawbone had become so brittle that her doctor removed it by simply lifting it out. “The radium was destroying the bone and literally drilling holes in the women’s jaws while they were still alive,” said Moore.
Yet it would take another two years before the company that owned the factory, the United States Radium Corporation, took any action at all, through an independent investigation commissioned mostly to investigate the declining business rather than the health of the workers.
In 1925 Grace Fryer, one of the workers from the original New Jersey plant, decided to sue, but she would spend two years searching for a lawyer willing to help her. She finally filed her case in 1927 along with four fellow workers, and made front-page news around the world.
The case, settled in the women’s favor in 1928, became a milestone of occupational hazard law. By this time, the dangers of radium were in full view, the lip-pointing technique was discontinued and the workers were being given protective gear. More women sued, and the radium companies appealed several times, but in 1939 the Supreme Court rejected the last appeal.
The survivors received compensation, and death certificates would start reporting the correct cause of death. The year before, the Food and Drug Administration banned the deceptive packaging of radium-based products. Radium paint itself was eventually phased out and has not been used in watches since 1968.

An enduring legacy

Related:

The game-changing design made to go unnoticed

It’s hard to calculate how many women suffered health problems due to the ingestion of radium, but the certainly number in the thousands, according to Moore. Some of the effects would only be felt much later in life through various forms of cancer. With a half-life of 1,600 years, once the radium was inside the women’s bodies, it was there for good.
The legacy of the Radium Girls lives on through the ripples that their deaths created in labor law and our scientific understanding of the effects of radioactivity. “In the 1950s, during the Cold War, many agreed voluntarily to be studied by scientists, even with intrusive examinations because they had been exposed for prolonged periods of time,” said Moore.
“Almost everything we know about radiation inside the human body, we owe to them,” she said. http://edition.cnn.com/style/article/radium-girls-radioactive-paint/index.html

December 20, 2017 Posted by | history, radiation, USA, women | Leave a comment

The Hiroshima/Nagasaki Survivor Studies: Discrepancies Between Results and General Perception

Chris Busby published an answering to this paper. As soon as I am getting it, I will add it here below this paper.

By Bertrand R. Jordan – Unité Mixte de Recherche 7268 ADÉS, Aix-Marseille Université/Etablissement Français du Sang/Centre National de la Recherche Scientifique, Espace éthique méditerranéen, Hôpital d’Adultes la Timone, 13385 Marseille Cedex 05, France

ABSTRACT The explosion of atom bombs over the cities of Hiroshima and Nagasaki in August 1945 resulted in very high casualties, both immediate and delayed but also left a large number of survivors who had been exposed to radiation, at levels that could be fairly precisely ascertained. Extensive follow-up of a large cohort of survivors (120,000) and of their offspring (77,000) was initiated in 1947 and continues to this day. In essence, survivors having received 1 Gy irradiation ( 1000 mSV) have a significantly elevated rate of cancer (42% increase) but a limited decrease of longevity ( 1 year), while their offspring show no increased frequency of abnormalities and, so far, no detectable elevation of the mutation rate. Current acceptable exposure levels for the general population and for workers in the nuclear industry have largely been derived from these studies, which have been reported in more than 100 publications. Yet the general public, and indeed most scientists, are unaware of these data: it is widely believed that irradiated survivors suffered a very high cancer burden and dramatically shortened life span, and that their progeny were affected by elevated mutation rates and frequent abnormalities. In this article, I summarize the results and discuss possible reasons for this very striking discrepancy between the facts and general beliefs about this situation.

THE first (and only) two A-bombs used in war were deto-nated over Hiroshima and Nagasaki on August 6 and 9, 1945. Casualties were horrendous, approximately 100,000 in each city including deaths in the following days from severe burns and radiation. Although massive bombing of cities had already taken place with similar death tolls (e.g., Dresden, Hamburg, and Tokyo, the latter with 100,000 casualties on March 9, 1945), the devastation caused by a single bomb was unheard of and remains one of the most horrifying events in the past century. The people who had survived the explosions were soon designated as Hibakusha and were severely discrim-inated against in Japanese society, as (supposedly) carriers of (contagious?) radiation diseases and potential begetters of malformed offspring. While not reaching such extremes, the dominant present-day image of the aftermath of the Hiroshima/ Nagasaki bombings, in line with the general perception of radiation risk (Ropeik 2013; Perko 2014), is that it left the sites heavily contaminated, that the survivors suffered very serious health consequences, notably a very high rate of cancer and other debilitating diseases, and that offspring from these sur-vivors had a highly increased rate of genetic defects. In fact, the survivors have been the object of massive and careful long-term studies whose results to date do not support these conceptions and indicate, instead, measurable but limited det-rimental health effects in survivors, and no detectable genetic effects in their offspring. This Perspectives article does not provide any new data; rather, its aim is to summarize the results of the studies undertaken to date, which have been published in more than 100 papers (most of them in interna-tional journals), and to discuss why they seem to have had so little impact beyond specialized circles.

Bombings and Implementation of Cohort Studies

Characteristics of the bombs and the explosions

 

1.jpg

Figure 1 Number of solid cancers ob-served up to 1998 in the exposed group; the white portion indicates the excess cases associated with radiation (compar-ison with the unexposed group). Data are from Preston et al. (2007).

The device used at Hiroshima was based on enriched uranium and exploded at an altitude of 600 m with an estimated yield equivalent to 16 kilotons of high explosive. The bomb at Nagasaki was based on plutonium and exploded at 500 m with a yield of 21 kilotons. The major effect of both bombs was an extreme heat and pressure blast accompanied by a strong burst of gamma radiation and a more limited burst of neutrons. The heat blast set the (mostly wooden) buildings on fire in a radius of several kilometers and resulted in an extensive fire-storm centered on the explosion site (also called the hypocen-ter). People were exposed to the combined heat and radiation blasts, with little shielding from the buildings; most of those located within 1.5 km of the hypocenter were killed. The contribution of fallout from these explosions, which occurred mostly as “black rain” in the following days, is not precisely known: few measurements were taken due to scarcity of equipment, and investigations in the first months were per-formed by the US army and subsequently classified. It was probably limited: the bombs exploded at a significant altitude, the resulting firestorm carried the fission products into the high atmosphere, and the eventual fallout was spread over a large area. In addition, a strong typhoon occurred 2 weeks after the bombings and may have washed out much of the materiel. The major health effects (other than the heat blast and accompanying destruction) were almost certainly due to the gamma and neutron radiation from the blasts themselves, and these doses can be quite reliably estimated from the dis-tance to the hypocenter. Thus studies on the survivors can ascertain the health effects of a single, fairly well-defined dose of gamma radiation with a small component from neutrons.

The Atomic Bomb Casualty Commission and the Radiation Effects Research Foundation

Continue reading

November 4, 2017 Posted by | radiation | , , , | 6 Comments

Radiation has affected Fukushima’s monkeys: smaller bodies, smaller brains, anaemia

Forbes 30th Oct 2017, Fukushima City is 50 miles northeast of the Fukushima-Daiichi Power Plant, so the radiation levels have been lower there than in the restricted areas, now reopening, that are closer to the plant. Hayama was unable to test monkeys in the most-contaminated areas, but even 50 miles from the plant,he has documented effects in monkeys that are associated with radiation.

He compared his findings to monkeys in the same area before 2011 and to a control population of monkeys in Shimokita Peninsula, 500 miles to the north. Hayama’s findings have been published in the peer-reviewed journal Scientific Reports, published by Nature.

Among his findings: Smaller Bodies — Japanese monkeys born in the path of fallout from the Fukushima meltdown weigh less for their height than monkeys born in the same area before the March, 2011 disaster, Hayama said. “We can see that the monkeys born from mothers who were exposed are showing low body weight in relation to their height, so they are smaller,” he said.

Smaller Heads And Brains — The exposed monkeys have smaller bodies overall, and their heads and
brains are smaller still. “We know from the example of Hiroshima and Nagasaki that embryos and fetuses exposed in utero resulted in low birth weight and also in microcephaly, where the brain failed to develop adequately and head size was small, so we are trying to confirm whether this also is happening with the monkeys in Fukushima,” Hayama said.

Anemia
— The monkeys show a reduction in all blood components: red blood cells,
white blood cells, hemoglobin, and the cells in bone marrow that produce
blood components.    https://forbes.com/sites/jeffmcmahon/2017/10/30/three-ways-radiation-has-changed-the-monkeys-of-fukushima-a-warning-for-humans/#49c032266237

November 4, 2017 Posted by | environment, Japan, radiation | Leave a comment

Woods Hole Oceanographic Institution finds radioactivity from 9146-1958 nuclear bomb tests is still lingering

The WHOI research team also compared the radioactive contamination at the Marshall Islands to the contamination found today near Fukushima in Japan in the aftermath of the Dai-ichi Nuclear Power Plant disaster.  “In contrast to Fukushima, where cesium is the most abundant radionuclide of concern, in these atolls, the focus should be on plutonium, given its significantly high levels,” said WHOI radiochemist Ken Buesseler.  

Radioactivity Lingers from 1946-1958 Nuclear Bomb Tests http://www.whoi.edu/news-release/radioactivity-lingers-from-1946-1958-nuclear-bomb-tests   Scientists sample remote Pacific atolls with new tools to measure ongoing releases, OCTOBER 30, 2017

Scientists have found lingering radioactivity in the lagoons of remote Marshall Island atolls in the Pacific Ocean where the United States conducted 66 nuclear weapons tests in the 1940s and 1950s.

Radioactivity levels  at Bikini and Enewetak Atolls were extensively studied in the decades after the testing ended, but there has been relatively little work conducted there recently. A team of scientists from Woods Hole Oceanographic Institution (WHOI) reported that levels of radioactive cesium and plutonium have decreased since the 1970s, but these elements continue to be released into the Pacific Ocean from seafloor sediments and lagoon waters.

The levels of plutonium are 100 or more times higher in lagoon waters compared to the surrounding Pacific Ocean and about two times higher for a radioactive form of cesium. Despite these enrichments, they do not exceed U.S. and international water quality standards set to protect human health, the scientists reported Oct. 30, 2017, in the journal Science of the Total Environment.

To determine the source of these radionuclides in lagoon waters, the WHOI scientists measured the amounts and flow of radioactive material entering the ocean from groundwater seeping from the islands. They found that groundwater was a relatively low source of radioactivity.

In particular, they found that radioactive groundwater was not leaking much from beneath one suspected potential source: the Runit Dome on the island of Runit—a massive 350-foot-wide concrete lid that covers 111,000 cubic yards of radioactive soil and debris that were bulldozed into a bomb crater and sealed over. It was constructed in the late 1970s by the U.S. government to contain contaminated waste from the nuclear tests. The bottom of the Runit Dome is not lined and below sea level, so scientists and others have been concerned that tidal action could move water through the buried radioactive material and bring it out to sea.

“The foundations of these island atolls are ancient coral reefs that have the porosity of Swiss cheese, so groundwater and any mobilized radioactive elements can percolate through them quite easily,” said WHOI geochemist Matt Charette. Though that does not seem to be happening now, the scientists advise that the Runit Dome area should be continuously monitored as sea level rises and the dome deteriorates.

Using isotopes of plutonium that act like a fingerprint to pinpoint sources, the WHOI scientists found that the seafloor sediments around Runit Island seem to be contributing about half of the plutonium to the lagoon.  “Additional studies examining how radioactive plutonium moves through the environment would help elucidate why this small area is such a large source of radioactivity,” Buesseler said.

The WHOI scientists who conducted the study and wrote the report included Ken Buesseler, Matthew Charette, Steven Pike, Paul Henderson, and Lauren Kipp. They sailed to the islands aboard the research vessel Alucia on an expedition funded by the Dalio Explore Fund.

The team collected sediments from the lagoon with poster tube-sized collectors that were inserted by divers into the seafloor’s sediments, filled with mud, capped. Back in WHOI laboratories, the cores were sliced into layers and analyzed to reveal a buried record of local fallout from the nuclear tests. The scientists also collected and analyzed samples of lagoon waters .

On the islands, they collected groundwater samples from cisterns, wells, beaches, and other sites. They analyzed these samples for the levels of radioactive cesium and plutonium from weapons tests. For the first time on these islands, the scientists also measured isotopes of radium, a naturally occurring radioactive “tracer” that give scientists key information to determine how much and how fast groundwater flows from land into the ocean.

The WHOI research team also compared the radioactive contamination at the Marshall Islands to the contamination found today near Fukushima in Japan in the aftermath of the Dai-ichi Nuclear Power Plant disaster.  “In contrast to Fukushima, where cesium is the most abundant radionuclide of concern, in these atolls, the focus should be on plutonium, given its significantly high levels,” said WHOI radiochemist Ken Buesseler.

The U.S. conducted 66 nuclear weapons tests between 1946 and 1958 at Bikini and Enewetak Atolls, each a ring of low-lying reef islands that surrounds a larger lagoon. Bikini has 26 islands; Enewetak had 42 islands, but three were bombed out of existence. They became known as the western part of the “U.S. Pacific Proving Grounds.”

Bikini and Enewetak are among 29 atolls that make up the Republic of the Marshall Islands, located in the equatorial Pacific, about 2,500 miles west of Hawaii. The collective land area of the thousands of small islands is equivalent to the area of Washington, D.C. but they are spread across an ocean area that exceeds the size of Alaska.

The work holds particular significance to the atolls’ indigenous populations which were evacuated before the tests and thus far have only been allowed to return to one small island in the Enewtak Atoll.

This research was funded by the Dalio Foundation and the Dalio Explore Fund.

The Woods Hole Oceanographic Institution is a private, non-profit organization on Cape Cod, Mass., dedicated to marine research, engineering, and higher education. Established in 1930 on a recommendation from the National Academy of Sciences, its primary mission is to understand the ocean and its interaction with the Earth as a whole, and to communicate a basic understanding of the ocean’s role in the changing global environment. For more information, please visit www.whoi.edu.

November 3, 2017 Posted by | OCEANIA, radiation, weapons and war | Leave a comment

Trump administration set to unravel protection rules on ionising radiation?

EPA Says Higher Radiation Levels Pose ‘No Harmful Health Effect’Bloomberg, By Ari Natter, 

  • Trump administration guidelines may be  prelude to easier rules
In the event of a dirty bomb or a nuclear meltdown, emergency responders can safely tolerate radiation levels equivalent to thousands of chest X-rays, the Environmental Protection Agency said in new guidelines that ease off on established safety levels. The EPA’s determination sets a level ten times the drinking water standard for radiation recommended under President Barack Obama.
It could lead to the administration of President Donald Trump weakening radiation safety levels, watchdog groups critical of the move say. “It’s really a huge amount of radiation they are saying is safe,” said Daniel Hirsch, the retired director of the University of California, Santa Cruz’s program on environmental and nuclear policy.
“The position taken could readily unravel all radiation protection rules.” https://www.bloomberg.com/news/articles/2017-10-16/epa-says-higher-radiation-levels-pose-no-harmful-health-effect

October 20, 2017 Posted by | politics, radiation, USA | Leave a comment

America’s EPA now deliberately obscuring the truth on ionising radiation and health

Trump EPA Questioning Science on Radiation Safety, Non-Profit Watchdog Warns https://www.districtsentinel.com/trump-epa-questioning-science-radiation-safety-non-profit-watchdog-warns/

  by Sam Knight Environmental regulators are telling local officials that it’s okay for the public to be exposed to radiation equivalent to “5,000 chest x-rays,” according to critics.

The EPA issued a public guidance in September, advising local officials to respond to a possible nuclear emergency by claiming that 5,000-10,000 millirems exposure “usually result[s] in no harmful health effects.” The watchdog group Public Employees for Environmental Responsibility (PEER) said past studies funded by the US government declared that level to be highly carcinogenic.

“National Research Council of the National Academy of Sciences, and EPA itself, have long estimated that 10,000 millirems could be expected to induce excess cancers in every 86th person exposed,” PEER said on Monday.

The non-profit criticized the agency for failing to cite which “radiation safety experts” it used to justify the declaration.

The EPA also didn’t say how long a human should be safe, when exposed to radiation at the 5,000-10,000 millirem range. It did note, however, that 75,000 millirem exposure “in a short amount of time (usually minutes too hours)” can cause acute radiation sickness.

“Although cancer has been associated with high doses of radiation received over short periods of time, the cancers usually do not appear for many years, even decades,” the guidance noted, ominously.

PEER Executive Director Jeff Ruch said the threshold cited by the agency could lead to a dangerous hands-off approach, should catastrophe strike.

“This signals that in the event of a Fukushima-type accident EPA will allow public consumption of radiation-contaminated drinking water for months,” Ruch said.

“Dr. Strangelove is alive and lurking somewhere in the corridors of EPA,” he added.

PEER noted that it is planning on suing the EPA to challenge the legality of the radiation exposure claims. The group said that the guidance violates the Safe Drinking Water Act.

The agency advice on radiation exposure–a supplement to a “Protective Action Guide”–was crafted, in its own words, “to help emergency planners prepare public communications prior to and during” radiological and nuclear emergencies.

In January, just before President Obama left office, the EPA issued the initial Protective Action Guide. It set the allowable threshold for the general population at 500 millirems, and the threshold for babies, children, and pregnant and nursing women at 100 millirems.

“Some commenters…believe the proposed PAG was too conservative and that EPA should consider establishing the PAG in the 2,000 to 10,000 [millirem] range,” the agency said in January, in the Federal Register.

PEER was critical of these limits, reacting to them by saying they also violated Safe Drinking Water Act rules.

“For decades, EPA had taken the position that ‘There is no known safe amount of radiation,’” the watchdog said on Monday.

October 18, 2017 Posted by | environment, radiation, USA | Leave a comment

Are the remains of an experimental reactor buried on the Niagara Falls storage site?

A wide range of radioactive material was dumped cavalierly on site during the Second World War and the decades that followed: plutonium, uranium, thorium, cesium, polonium, strontium, and other dangerous materials. On site today, buried with that steel ball, is what is assumed to be irradiated graphite and almost 4,000 tons of radioactive radium-226, the largest repository in the western hemisphere, representing a staggering quantity of radiation.

—isotopes of plutonium, uranium, cesium, polonium, and other elements that are produced only inside nuclear reactors and by nuclear explosions—

It was known as the Radiological Warfare, or RW, program, and under its auspices scientists studied what materials could best be weaponized, what health consequences they would have on an enemy,

The Bomb That Fell On Niagara: The Sphere Artvoice Weekly Edition » Issue v7n39 (09/24/2008), by Geoff Kelly & Louis Ricciuti

Are the remains of an experimental reactor buried on the Niagara Falls storage site?

This is going to seem complicated and take a long way to get where it’s going. So here’s the gist, right upfront: Possibly, in Lewiston, are buried the remnants of an experimental nuclear reactor dating from the 1940s. This reactor would have been part of a secret program to weaponize poisonous materials—a program with roots in the study of poison gases in the First World War and whose culmination is found today in the use of depleted uranium munitions around the world.

Sure, it sounds like a plot inspired by Dr. Strangelove. But read on.

Amid the radioactive slurry and scrap interred in the 10-acre interim containment facility at the Niagara Falls Storage Site in Lewiston is a curiosity: a hollow industrial steel ball, 38 feet in diameter.

You won’t find that house-sized steel ball on any waste materials manifest, at least not on any manifest released to the public by the US Army Corp of Engineers, which is the site’s caretaker, or the US Department of Energy, which owns the site and the hazardous waste buried there.

The ball exists in aerial photographs taken of the site in the mid 1940s, however, and it appears to have been rediscovered in a 2002 electric resistivity underground imaging study performed by defense contracting giant SAIC.

In those aerial photos, the ball sits some distance from the main cluster of buildings; the nearest structure is a concrete silo, which eventually became a receptacle for high-energy radium wastes, a legacy of local industry’s central role in the Manhattan Project and the Atomic Energy Commission, which produced the first atomic bombs.

The Army Corps say there is no documentary record of the ball having been removed from the site. And the 2002 electric imaging scans suggest that a steel sphere, 38 feet in diameter, just like the one in the photos, is buried about a quarter mile from the ball’s original location, on the developed portion of a vast, former federal reservation called the Lake Ontario Ordnance Works. The LOOW came online officially in 1942, a 7,500-acre facility cobbled together from farm fields by the Department of War. Its initial use, according to the site’s official history, was a TNT factory. That factory closed, however, after nine months, at the height of the Second World War. The factory and all its infrastructure—miles of massive pipes, a water and power grid sufficient to sustain a city of 100,000 people, dozens of industrial buildings—were declared surplus.

The LOOW’s actual uses have been a mystery, whose plots and subplots have been revealed slowly and grudgingly by an unforthcoming federal government. ……..

Various sectors of the vast compound became dumping grounds for toxic radiological and chemical waste produced in Niagara Falls factories, as well as laboratories and reactors nationwide, working first on the atom bomb project and later on other Atomic Energy Commission and defense- and intelligence-related projects. A wide range of radioactive material was dumped cavalierly on site during the Second World War and the decades that followed: plutonium, uranium, thorium, cesium, polonium, strontium, and other dangerous materials. On site today, buried with that steel ball, is what is assumed to be irradiated graphite and almost 4,000 tons of radioactive radium-226, the largest repository in the western hemisphere, representing a staggering quantity of radiation.

Beginning in 1980, these wastes—originally dumped in open pools, seeping out of corroded barrels, or just piled on open ground—were consolidated by the DOE into a temporary containment structure on the 119-acre Niagara Falls Storage Site.

The existence on the LOOW of particularly exotic transuranics (that is, above uranium on the periodic table) and fission materials—isotopes of plutonium, uranium, cesium, polonium, and other elements that are produced only inside nuclear reactors and by nuclear explosions—has begged an explanation for decades. The Army Corps says that these transuranics and fission materials arrived at the LOOW with waste from the Navy’s Knolls Atomic Power Laboratory near Schenectady. But the waste from Knolls doesn’t explain all the transuranics and fission materials found on the LOOW, according to some experts, and it doesn’t explain how widespread and how much.

That steel sphere buried among this collection of radiological waste suggests another, simpler explanation: Could that steel ball—a Hortonsphere, named for the inventor of the process of its fabrication—been a component in an early model of an experimental ball-and-pile reactor? One in which exotic materials were created or irradiated, all in the service of a federal weapons program that sought to find new and lethal applications of the materials created in Niagara Falls for the Manhattan Project and beyond?

“I’d have to say yes,” says Tedd Weyman, of the Uranium Medical Research Centre, based in Toronto.

Occam’s Razor

Weyman is a physicist and his group, UMRC, studies the effects of uranium, transuranium elements, and radionuclides produced by the process of uranium decay and fission. UMRC is especially interested in the health effects of depleted uranium, whether it enters the environment as a result of munitions use or as waste.

Weyman examined the aerial photographs of the ball and silo, the list of transuranics and fission materials found on site, and the electric imaging scan that seemed to show that same ball from the photos buried alongside radioactive waste. He reviewed documents that describe the history of the LOOW site and of Niagara Falls industry over the past 60 or so years: the metals and chemicals and devices created in nearby factories, the experimental programs undertaken by defense and intelligence agencies beginning in the 1940s. He considered the size of the Hortonsphere, which he said is consistent with a ball reactor, and its placement in relation to the silo, which is consistent with the pile in a ball and pile reactor—that is, the source of the reactor’s “fuel” and critical reactions.

Weyman then listened to the explanations the Army Corps offered for the ball and the transuranics and fission products: that the ball was used to store anhydrous ammonia used in making TNT and the transuranics and fission products came from Knolls. He concluded that an on-site reactor was a far simpler explanation.

“They’re fission products,” Weyman says of the residues found on site…..

On the subject of the history of the LOOW site and the environmental dangers it poses, the Army Corps has been less than reliable when discussing the documentary evidence. In 2000, for example, when offered evidence that plutonium-tainted waste from medical experiments conducted at the University of Rochester had been buried on the LOOW site, the Corps denied such evidence existed. Eventually, they allowed both that the evidence existed and that the plutonium-tainted waste had been found on site…….

Occam’s Razor is the principle that the simplest explanation is most often the correct one. There’s that anomaly, exactly the diameter of the ball in question, which is exactly the size and manufacture of a ball reactor vessel. It is interred alongside radioactive waste. It originally sat near a silo, which once stored radioactive waste; a 1944 photo of the site looks like a photo of a ball and pile reactor of that era. And there are transuranics and fission materials buried nearby, as well as irradiated graphite, whose nature, quantity, and location aren’t completely explained by the Knolls hypothesis.

“If it quacks, is it not a duck?” Weyman says. “It’s quacking pretty loud.”……….

It was known as the Radiological Warfare, or RW, program, and under its auspices scientists studied what materials could best be weaponized, what health consequences they would have on an enemy, how best to deliver and disperse radioactive materials to a battle zone, and how much to use. This research was more secretive, but here too the expertise of local industries proved valuable. In a brochure from the postwar era, Bell Aircraft (later Bell Aerospace) bragged of its research in area weapons: that is, devices that disperse materials across a battlefield. Niagara Sprayer (a.k.a. FMC, the Middleport company that manufactured Agent Orange) created specialized compounds and nozzles for spraying agricultural metals, powders, and insecticides.

And over at the LOOW site, there was a mammoth federal reserve on which exotic radioactive wastes were accumulating.

Bob Nichols, the San Francisco-based writer who came to the same conculsion as Weyman about the ball buried on the NFSS, specializes in the history of this second track of research. He draws a straight line that connects the radiological warfare program to American research into poison gases, such as mustard gas and chlorine gas (both of which were produced in Niagara County), during the First World War; that line passes through the Manhattan Project along the way, and continues to the present-day use of depleted uranium munitions, which release a cloud of poisonous ceramicized uranium particles as a form of gas when they vaporize on impact.

Nichols explains that the first track—the building of more and better nuclear weapons—created vast stores of radiological waste materials. “The question back then was what on earth to do with it,” he said………

Whatever took place on the former LOOW site in the first decades of the Cold War may have evolved and—like so many local industries—moved away. But its legacy is in the dirt, air, and water. It’s interred under that clay cap. It’s in the region’s higher-than-expected rates of cancer, diabetes, and other illnesses. History should matter to the Corps as much as it matters to those who live in its aftermath.

For more documents and photographs related to the article, visit AV Daily at Artvoice.com. http://artvoice.com/issues/v7n39/the_sphere.html

October 16, 2017 Posted by | history, radiation, Reference, secrets,lies and civil liberties, USA, weapons and war | Leave a comment

Essential for the public to know about the hazards of RADON

In the face of multiple environmental hazards and issues radon often gets overlooked, partially because radon is what one can call a silent killer

Educating the public about radon and their ill effects and ways of preventing it is a must as there is not much awareness about this in the public –despite many northern states in the USA having high concentrations. Part of this education effort involves indoor testing.

Public funding and radon poisoning, what’s the link? https://mahb.stanford.edu/blog/radon-public-funding/ Morgan, Jessica | October 5, 2017 It has only been a short while since the news of drastic budget trimming on various EPA projects by President Donald Trump’s government came out; however, it is already obvious that it will have a long-term effect on the environment.

The proposed 25-30% cut in EPA’s budgets can severely affect several climate programs that were nurtured under President Obama’s rule, and many other initiatives and projects that support clean air and water. These initiatives were introduced for the well-being of the public to a large extent in the future. This move can also shut the doors for the Indoor Air Radon Program and State Indoor Radon Grants.

The main goal of the Indoor Air Radon Program is minimizing and preventing radon-related lung cancer nationally. The EPA provides grant funds to States and tribes. These funds help finance their radon risk reduction programs. The recipients of the funds must provide a minimum of 40% in matching funds. The SIRG or States Indoor Radon Grant funds are however not available to individuals or homeowners.

The SIRG program was started in 1988 and has been consistent in supporting the State efforts to reduce Radon exposure-related health risks. The SIRG program from time to time has been revising the SIRG guidance by removing the obsolete administrative and technical guidance and updating with latest modifications that address a renewed emphasis on program priorities, documenting results, and results reporting.

Those who receive funds from SIRG are expected to follow the agency’s strategic goals and all their projects and activities must be aligned accordingly. The strategic goals include,

  • Local government to adopt building codes that require radon-reducing features and initiate those building new homes to add these radon-reducing features where appropriate.
  • Have real estate dealers test the property for radon exposure before striking a deal. Also, have homeowners test their homes for radon exposure and have it fixed.
  • Have existing school buildings check for radon exposure and get it fixed appropriately. Building new schools with radon-reducing features.
  • Conducting projects and activities that bring awareness to the public about the above three strategies which include promoting action by consumers, real estate professionals, state and local building code officials, schools officials, non-profit public health organizations,  professional organizations partnerships.

Cutting down the EPA budget can directly affect the SIRG program as it is essential to continue the State radon programs. With the budget cut down, SIRG cannot run an effective program.

In the face of multiple environmental hazards and issues radon often gets overlooked, partially because radon is what one can call a silent killer. It is a gas which is odorless, tasteless, and colorless. When radium or uranium present in the soil, rock, or water breaks down or decays, it releases radon. Radon itself does not cause any harmful effects as it travels to the surface of the ground and dilutes in the air outdoors. The problem is when the gas accumulates indoor in a building it might not have room for an escape of dilution and further decays –radon can enter a house through cracks in foundations, floors, well water, etc. The decayed radon creates radon progeny, which are radioactive particles that attach to dust particles indoors. When a person inhales this radioactive gas, it can damage the cells in the lung tissue and leads to lung cancer.

Usually there will be two copies of DNA repair enzymes in many people that can repair the damage; however, a few less fortunate people may have just one copy of these DNA repair enzymes which might not be sufficient enough to repair the damages and can lead to lung cancer. This is the reason why even though an entire family is living in a radon-exposed environment, only one or two might be affected by it.

Radon is measured in picocuries per liter of air, and the recommended level is 4 pCi/L. In comparison, the outdoor level of radon is just 0.4 pCi/L. If a house or a building has radon above the recommended levels then proper actions need to be taken. Modern technology is able to bring down the radon level indoors to 2 pCi/L or lower.

Educating the public about radon and their ill effects and ways of preventing it is a must as there is not much awareness about this in the public –despite many northern states in the USA having high concentrations. Part of this education effort involves indoor testing. There are short term tests that last for 90 days as well as long-term tests that last for more than 90 days to confirm the levels. There are also test kits available. If it is confirmed that your home is exposed to radon, mitigation steps can be taken by professional contractors who have expertise in this field. The contractor will gauge your house and recommend the exact mitigation system that your house will need. There are different methods like soil suction which involves sub-slab suction, sump holds suction, drain tile suction, and block wall suction. Other methods are heat recovery ventilators, home pressurization, well water aeration, sealing radon entry locations, etc.

Reductions in federal funding for the Indoor Air Radon Program and States Indoor Radon Grant hamstrings many of the radon risk reduction and education programs, raising the likelihood that low-income households will not be able to afford testing and mitigation.  Whether your government supports you or not, you can learn more about the harmful risks of radon and the steps you can take to make your house safer for you and your family. To learn more about radon, go through this infographic from PropertEco which explains about radon gas and its ill effects.


The MAHB Blog is a venture of the Millennium Alliance for Humanity and the Biosphere. Questions should be directed to joan@mahbonline.org

MAHB Blog: https://mahb.stanford.edu/blog/radon-public-funding/

October 7, 2017 Posted by | politics, radiation, Reference | Leave a comment