Recycling nuclear waste still itself produces nuclear waste
Recycle everything, America—except your
nuclear waste https://thebulletin.org/2019/07/recycle-everything-america-except-your-nuclear-waste/ By Allison Macfarlane, Sharon Squassoni, July 8, 2019 Americans have come late to the game on responsible consumerism, but they are making up for lost time with a passionate obsession about waste. It’s no coincidence that Fox News, CNN, YouTube and USA Today have all reported that the deepest solo ocean dive found plastic waste seven miles below the surface, in the Mariana Trench.
Now that Americans are “woke” about waste in general, they may turn to the specific kind produced by the nuclear energy industry. Plans to revitalize US nuclear power, which is in dire economic straits, depend on the potential for new, “advanced” reactors to reduce and recycle the waste they produce. Unfortunately, as they “burn” some kinds of nuclear wastes, these plants will create other kinds that also require disposal. At the same time, these “advanced” reactors—many of which are actually reprises of past efforts—increase security and nuclear weapons proliferation risks and ultimately do nothing to break down the political and societal resistance to finding real solutions to nuclear waste disposal.
The current nuclear dream is really no different from previous ones of the last 70 years: the next generation of reactors, nuclear power advocates insist, will be safer, cheaper, more reliable, less prone to produce nuclear bomb-making material, and more versatile (producing electricity, heat, and perhaps hydrogen), without creating the wastes that have proved almost impossible to deal with in the United States. The Nuclear Energy Innovation and Modernization Act specifically describes the advanced reactors it seeks to support as having all those positive characteristics. This newest burst of enthusiasm for advanced reactors is, however, largely fueled by the idea that they will burn some of their long-lived radioisotopes, thereby becoming nuclear incinerators for some of their own waste.
Many of these “advanced” reactors are actually repackaged designs from 70 years ago. If the United States, France, the UK, Germany, Japan, Russia, and others could not make these reactors economically viable power producers in that time, despite spending more than $60 billion, what is different now? Moreover, all of the “advanced” designs under discussion now are simply “PowerPoint” reactors: They have not been built at scale, and, as a result, we don’t really know all the waste streams that they will produce.
It’s tempting to believe that having new nuclear power plants that serve, to some degree, as nuclear garbage disposals means there is no need for a nuclear garbage dump, but this isn’t really the case. Even in an optimistic assessment, these new plants will still produce significant amounts of high-level, long-lived waste. What’s more, new fuel forms used in some of these advanced reactors could pose waste disposal challenges not seen to date.
Some of these new reactors would use molten salt-based fuels that, when exposed to water, form highly corrosive hydrofluoric acid. Therefore, reprocessing (or some form of “conditioning”) the waste will likely be required for safety reasons before disposal. Sodium-cooled fast reactors—a “new” technology proposed to be used in some advanced reactors, including the Bill Gates-funded TerraPower reactors—face their own disposal challenges. These include dealing with the metallic uranium fuel which is pyrophoric (that is, prone to spontaneous combustion) and would need to be reprocessed into a safer form for disposal.
Unconventional reactors may reduce the level of some nuclear isotopes in the spent fuel they produce, but that won’t change what really drives requirements for our future nuclear waste repository: the heat production of spent fuel and amount of long-lived radionuclides in the waste. To put it another way, the new reactors will still need a waste repository, and it will likely need to be just as large as a repository for the waste produced by the current crop of conventional reactors.
Recycling and minimizing—even eliminating—the waste streams that many industries produce is responsible and prudent behavior. But in the context of nuclear energy, recycling is expensive, dirty, and ultimately dangerous. Reprocessing spent nuclear fuel—which some advanced reactor designs require for safety reasons—actually produces fissile material that could be used to power nuclear weapons. This is precisely why the United States has avoided the reprocessing of spent nuclear fuel for the last four decades, despite having the world’s largest number of commercial nuclear power plants.
Continuing research on how to deal with nuclear waste is a great idea. But building expensive prototypes of reactors whose fuel requires reprocessing, on the belief that such reactors will solve the nuclear waste problem in America, is misguided. At the same time, discounting the notion that a US move into reprocessing might spur other countries to develop this same technology—a technology they could secretly exploit to produce nuclear weapons—is shortsighted and damaging to US national and world security.
THIS SUNKEN NUCLEAR SUB IS LEAKING RADIATION INTO THE OCEAN
![]() Sunken Measures A team of Russian and Norwegian scientists just made a grim, timely discovery. Just one week after a nuclear-powered Russian submarine caught fire, killing 14 sailors, researchers sent a remote submarine to collect samples around the sunken wreckage of another nuclear sub, which caught fire in 1989 leading to the deaths of 42 crew members. The preliminary results of their investigation indicate that radiation levels in the water near the sunken Soviet sub’s ventilation duct are up to 800,000 times higherthan expected in sea water — suggesting we may be dealing with the repercussions of the recent disasterfor decades to come. This isn’t the first time researchers have detected higher than normal radiation levels around the wreckage of K-278 Komsomolets, which sunk about 260 miles off the Norwegian coast and is now about a mile beneath the ocean’s surface. “We took water samples from inside this particular duct because the Russians had documented leaks here both in the 1990s and more recently in 2007,” expedition leader Hilde Elise Heldal said in a press release. “So we weren’t surprised to find high levels here.” While the current levels are higher than normal, according to Heldal, they aren’t high enough to threaten Norwegian fish or seafood — so for now, the team plans to thoroughly study its collected samples and continue to monitor to wreckage for signs that the radiation is getting worse. |
|
-
Archives
- August 2022 (149)
- July 2022 (368)
- June 2022 (277)
- May 2022 (375)
- April 2022 (378)
- March 2022 (405)
- February 2022 (333)
- January 2022 (422)
- December 2021 (299)
- November 2021 (400)
- October 2021 (346)
- September 2021 (291)
-
Categories
- 1
- 1 NUCLEAR ISSUES
- business and costs
- climate change
- culture and arts
- ENERGY
- environment
- health
- history
- indigenous issues
- Legal
- marketing of nuclear
- media
- opposition to nuclear
- PERSONAL STORIES
- politics
- politics international
- Religion and ethics
- safety
- secrets,lies and civil liberties
- spinbuster
- technology
- Uranium
- wastes
- weapons and war
- Women
- 2 WORLD
- ACTION
- AFRICA
- AUSTRALIA
- Christina's notes
- Christina's themes
- culture and arts
- Fuk 2022
- Fukushima 2017
- Fukushima 2018
- fukushima 2019
- Fukushima 2020
- Fukushima 2021
- general
- global warming
- Humour (God we need it)
- Nuclear
- RARE EARTHS
- Reference
- resources – print
- Resources -audiovicual
- World
- World Nuclear
- YouTube
-
RSS
Entries RSS
Comments RSS