nuclear-news

The News That Matters about the Nuclear Industry

Radioactivity in the Ocean: Diluted, But Far from Harmless

 Environment 360 7 April 2011  With contaminated water from Japan’s crippled Fukushima nuclear complex continuing to pour into the Pacific, scientists are concerned about how that radioactivity might affect marine life. Although the ocean’s capacity to dilute radiation is huge, signs are that nuclear isotopes are already moving up the local food chain. by Elizabeth Grossman Over the past half-century, the world has seen its share of incidents in which radioactive material has been dumped or discharged into the oceans. A British nuclear fuels plant has repeatedly released radioactive waste into the Irish Sea, a French nuclear reprocessing plant has discharged similar waste into the English Channel, and for decades the Soviets dumped large quantities of radioactive material into the Arctic Ocean, Kara Sea, and Barents Sea. That radioactive material included reactors from at least 16 Soviet nuclear-powered submarines and icebreakers, and large amounts of liquid and solid nuclear waste from USSR military bases and weapons plants.

Still, the world has never quite seen an event like the one unfolding now off the coast of eastern Japan, in which thousands of tons of radioactively contaminated water from the damaged Fukushima Daiichi nuclear power plant are pouring directly into the ocean. And though the vastness of the ocean has the capacity to dilute nuclear contamination, signs of spreading radioactive material are being found off Japan, including the discovery of elevated concentrations of radioactive cesium and iodine in small fish several dozen miles south of Fukushima, and high levels of radioactivity in seawater 25 miles offshore.

How this continuing contamination will affect marine life, or humans, is still unclear. But scientists agree that the governments of Japan, the United States, and other nations on the Pacific Rim need to ramp up studies of how far this contamination might spread and in what concentrations.

“Given that the Fukushima nuclear power plant is on the ocean, and with leaks and runoff directly to the ocean, the impacts on the ocean will exceed those of Chernobyl, which was hundreds of miles from any sea,” said Ken Buesseler, senior scientist in marine chemistry at the Woods Hole Oceanographic Institution in Massachusetts. “My biggest concern is the lack of information. We still don’t know the whole range of radioactive compounds that have been released into the ocean, nor do we know their distribution. We have a few data points from the Japanese — all close to the coast — but to understand the full impact, including for fisheries, we need broader surveys and scientific study of the area.”

Buessler and other experts say this much is clear: Both short-lived radioactive elements, such as iodine-131, and longer-lived elements — such as cesium-137, with a half-life of 30 years — can be absorbed by phytoplankton, zooplankton, kelp, and other marine life and then be transmitted up the food chain, to fish, marine mammals, and humans. Other radioactive elements — including plutonium, which has been detected outside the Fukushima plant — also pose a threat to marine life. A key question is how concentrated will the radioactive contamination be. Japanese officials hope that a temporary fishing ban off the northeastern Japanese coast will be enough to avert any danger to human health until the flow of radioactive water into the sea can be stopped…….

The Tokyo Electric Power Company (TEPCO) has reported that seawater containing radioactive iodine-131 at 5 million times the legal limit has been detected near the plant. According to the Japanese news service, NHK, a recent sample also contained 1.1 million times the legal level of radioactive cesium-137.

Studies from previous releases of nuclear material in the Irish, Kara and Barents Seas, as well as in the Pacific Ocean, show that such radioactive material does travel with ocean currents, is deposited in marine sediment, and does climb the marine food web. In the Irish Sea — where the British Nuclear Fuels plant at Sellafield in the northwestern United Kingdom released radioactive material over many decades, beginning in the 1950s — studies have found radioactive cesium and plutonium concentrating significantly in seals and porpoises that ate contaminated fish. Other studies have shown that radioactive material from Sellafield and from the nuclear reprocessing plant at Cap de la Hague in France have been transported to the North Atlantic and Arctic Oceans. A study published in 2003 found that a substantial part of the world’s radioactive contamination is in the marine environment.

But what impact this radioactive contamination has on marine life and humans is still unclear. Even the mass dumping of nuclear material by the Soviets in the Arctic has not been definitively shown to have caused widespread harm to marine life. That may be because containment vessels around some of the dumped reactors are preventing the escape of radiation. A lack of comprehensive studies by the Russians in the areas where nuclear waste was dumped also has hampered understanding. Two events in the early 1990s — a die-off of seals in the Barents Sea and White Sea from blood cancer, and the deaths of millions of starfish, shellfish, seals and porpoises in the White Sea — have been variously attributed by Russian scientists to pollution or nuclear contamination.

How the radioactive materials released from the Fukushima plants will behave in the ocean will depend on their chemical properties and reactivity, explained Ted Poston, a ecotoxicologist with the Pacific Northwest National Laboratory, a U.S. government facility in Richland, Washington. If the radionuclides are in soluble form, they will behave differently than if they are absorbed into particles, said Poston. Soluble iodine, for example, will disperse rather rapidly. But if a radionuclide reacts with other molecules or gets deposited on existing particulates — bits of minerals, for example — they can be suspended in the water or, if larger, may drop to the sea floor.

“If particulates in the water column are very small they will move with the current,” he explained. “If bigger or denser, they can settle in sediment.”…….http://e360.yale.edu/feature/radioactivity_in_the_ocean_diluted_but_far_from_harmless/2391/

Advertisements

March 23, 2016 - Posted by | oceans, radiation

1 Comment »

  1. Reblogged this on "OUR WORLD".

    Comment by Nancy | March 24, 2016 | Reply


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: