Upcoming Inspection of Fukushima Unit 1
November 25, 2021
TEPCO announced that the next phase of containment inspections inside unit 1 will finally take place in early 2022. This next phase of inspections had been delayed due to technical challenges, concerns of radioactive dust releases, then due to the pandemic.
Some of the explanatory materials provide new insight into the true situation inside unit 1. It has been speculated since 2011 that melted fuel (aka corium) flowed out of the pedestal of unit 1, across the containment floor, and burned through the thin connection edge of the containment structure. Diagrams included in this most recent report show that the entities tasked with decommissioning the damaged reactors think so too. Diagrams originally from NDF, the decommissioning authority, and IRID, the main agency tasked with research, show the same.
The graphic below shows a significant pile of melted fuel in the pedestal and along the outer edge of the containment structure. The right side graphic shows melted fuel a significant way up to the lower edge of the downcomer tubes that route into the torus tube. Evidence of fuel debris inside the torus tube was found in earlier inspections along with our early findings that appeared to show fuel debris under the water in the torus room outside of containment.
This side view of the same area shows what IRID and TEPCO assume to be the situation inside unit 1’s containment as they prepare for the upcoming inspections.The red color is solidified previously melted fuel, The brown layer is the sediment layer and the blue layer is standing water inside containment. The sediment layer on the right side where inspections have already taken place is significantly lower than the sediment bed directly adjacent to the assumed location of the fuel debris. The depth difference appears to be 3 times as much adjacent to the melted fuel locations.
The debris bed on the shallow right side was roughly 4-10 inches deep based on TEPCO estimates in 2017. If the left side adjacent to the solidified fuel is 3 times the depth, it would be 12-30 inches in depth. What exactly this debris bed is and how it developed had caused head-scratching for years. A TEPCO report in 2017 showed it contained stainless steel, materials related to shielding, cabling, and some low levels of reactor-based radioactive isotopes. If this material contained additional substances or not was a bit ambiguous. There had been some initial assumptions this was pulverized concrete. There may have been some involvement of the concrete structures into this debris pile through mechanical destruction or molten corium concrete interaction, but TEPCO provides insufficient data to confirm or rule this out.
Another 2017 report gave some rough estimates of the depth of the known parts of the debris bed. The known parts from an earlier set of inspections would be the general area marked by the A in the above graphic. This area is roughly 4 – 10 inches in depth. The left side adjacent to the solidified fuel would then be about 12 – 30 inches in depth. The deposits closer to the pedestal opening were close to 1 meter deep on a 2017 inspection. TEPCO could not determine if there was any solidified fuel beneath. They assumed the debris bed was providing extensive shielding that would prevent the detection of any layer of solidified fuel. This debris bed appears to reside 1/3 of the way up the downcomer cover. It is likely some amount of it has entered the torus tube and potentially the torus room.
Upcoming Inspections:
The upcoming inspections include a total of 6 ROV units. The remote operational vehicles are not true robots as each one has a control tether. The biggest concern with these units is having one become stranded, preventing the introduction of future ROV units to continue inspections. Each ROV unit has an assigned task. Due to internal equipment inside containment, a series of rings will be placed by the first ROV to help guide the ROV units and prevent entanglement.
ROV-A
ROV-A will attempt to traverse the south direction to the pedestal doorway.
ROV-A2 will attempt to enter the pedestal to capture imagery of the conditions and potential fuel location.
ROV units B to E each have similar tasks tied to characterizing the fuel debris and sediments.
Each ROV has about an 80-hour high radiation tolerance. They will be introduced by the level of risk with ROV-A2 going into the pedestal last due to the high risk. Preparation work begins in January. The entire series of inspections are currently scheduled to take 10 months to complete.
Robots to probe Fukushima No.1 reactor from Jan.
Thursday, Nov. 25, 2021
NHK has learned that the operator of the Fukushima Daiichi nuclear plant plans to start a delayed robot survey of a damaged reactor from mid-January.
Officials of Tokyo Electric Power Company say preparations are well under way to send submersible robots inside the containment vessel of the No.1 reactor.
The probe is part of efforts to remove molten fuel debris from the reactor that suffered a meltdown accident due to the 2011 earthquake and tsunami.
The utility originally planned to start the robot survey of the reactor in 2019.
It has been postponed because preparations, such as making a hole in the door of the vessel for the robots to go through, have taken time.
The officials say they are now installing equipment to remotely control the robots, and expect to carry out a survey for more than six months from mid-January.
They plan to use a total of six robots with different functions to find and examine nuclear debris, or deposits of a mixture of molten fuel and reactor parts, inside the containment vessel.
The robots will use ultrasonic devices to locate and measure how much debris there is, and how thick the deposit is. They are also expected to collect a small amount of samples.
Previous surveys at the plant confirmed the presence of deposits believed to be fuel debris in the No.2 and No.3 reactors, which also suffered meltdowns, but not in the No.1 reactor.
Protective sheet positioned at damaged reactor

June 12, 2020
The operator of the crippled Fukushima Daiichi nuclear plant has released footage showing part of the time-consuming steps needed to remove nuclear fuel from a pool at its No.1 reactor.
In the video, workers used remote-controlled tools to place a wide sheet over the surface of the pool. The radiation level there remains high.
Tokyo Electric Power Company has been engaged in removing debris from the upper part of the reactor building where the pool is located. The debris was caused by an explosion during the 2011 nuclear accident.
The sheet is meant to protect the pool and 392 nuclear fuel assemblies still inside from further damage that could result from the possible falling of debris or large machinery.
The six-by-eleven meter sheet is inflatable to a thickness of 50 centimeters. It will be filled with cement to increase its strength.
The operator plans to begin clearing the debris from around the pool by the end of the month, as soon as the sheet’s cement has solidified.
The operator plans to start removing the fuel from the pool of the No.1 reactor in fiscal 2027. Similar work at the No.2 reactor will start in fiscal 2024. Fuel removal from the pool at the No.3 reactor will be completed by fiscal 2020. The removal work is finished at the No.4 reactor.
TEPCO begins studying dislodged reactor cover

-
Archives
- December 2025 (223)
- November 2025 (359)
- October 2025 (377)
- September 2025 (258)
- August 2025 (319)
- July 2025 (230)
- June 2025 (348)
- May 2025 (261)
- April 2025 (305)
- March 2025 (319)
- February 2025 (234)
- January 2025 (250)
-
Categories
- 1
- 1 NUCLEAR ISSUES
- business and costs
- climate change
- culture and arts
- ENERGY
- environment
- health
- history
- indigenous issues
- Legal
- marketing of nuclear
- media
- opposition to nuclear
- PERSONAL STORIES
- politics
- politics international
- Religion and ethics
- safety
- secrets,lies and civil liberties
- spinbuster
- technology
- Uranium
- wastes
- weapons and war
- Women
- 2 WORLD
- ACTION
- AFRICA
- Atrocities
- AUSTRALIA
- Christina's notes
- Christina's themes
- culture and arts
- Events
- Fuk 2022
- Fuk 2023
- Fukushima 2017
- Fukushima 2018
- fukushima 2019
- Fukushima 2020
- Fukushima 2021
- general
- global warming
- Humour (God we need it)
- Nuclear
- RARE EARTHS
- Reference
- resources – print
- Resources -audiovicual
- Weekly Newsletter
- World
- World Nuclear
- YouTube
-
RSS
Entries RSS
Comments RSS









