Uncertainties in estimating production costs of future nuclear technologies: A model-based analysis of small modular reactors
Björn Steigerwald ab, Jens Weibezahn ca, Martin Slowik d, Christian von Hirschhausen ab
Highlights
- •We present a unique cost data set on 19 small modular reactors.
- •Manufacturer cost estimates are mostly too optimistic compared to production theory.
- •A Monte Carlo simulation shows that no concept is profitable or competitive.
- •Median NPVs are negative ranging from 3 (HTR) to 293 (SFR) million USD/MWel.
- •Median LCOEs start at 116 USD/MWh for HTRs and at 218 USD/MWh for PWRs.
Abstract
Predicting future costs of technologies not yet developed is a complex exercise that includes many uncertain parameters and functional forms. In that context, small modular reactor (SMR) concepts that are in a rather early development stage claim to have cost advantages through learning effects, standardized design, modularization, co-siting economies, and other factors, such as better time-to-market even though they exhibit negative economies of scale in their construction costs due to their lower power output compared to conventional nuclear reactors.
In this paper, we compare two different approaches from production theory and show that they have a theoretically equal structure. In the second step, we apply these approaches to estimate a range of potential construction costs for 15 SMR projects for which sufficient data is available. These include water cooled, high temperature, and fast neutron spectrum reactors. We then apply the Monte Carlo method to benchmark the cost projections assumed by the manufacturers by varying the investment costs, the weighted average cost of capital, the capacity factor, and the wholesale electricity price in simulations of the net present value (NPV) and the levelized cost of electricity (LCOE).
We also test whether the differences between the manufacturer estimates and ours differ between technology families of SMR concepts and apply a sensitivity analysis. Here we contribute to an intensifying debate in the literature on the economics and finance of SMR concepts. The Monte Carlo analysis suggests a broad range of NPVs and LCOEs: Surprisingly, the lowest LCOE is calculated for a helium-cooled high-temperature reactor, whereas all of the light water reactors feature higher LCOEs.
None of the tested concepts is able to compete economically with existing renewable technologies, not even when taking their variability and necessary system integration costs into account. The numerical results also confirm the importance of the choice of production theory and parameters. We conclude that any technology foresight has to take as much of the case specifics into account, including technological and institutional specifics; this also holds for SMR concepts……………………………………………………………………………………………………………………………………………………………………more https://www.sciencedirect.com/science/article/pii/S0360544223015980 #nuclear #antinuclear #nuclearfree #NoNukes
No comments yet.
-
Archives
- January 2026 (259)
- December 2025 (358)
- November 2025 (359)
- October 2025 (376)
- September 2025 (258)
- August 2025 (319)
- July 2025 (230)
- June 2025 (348)
- May 2025 (261)
- April 2025 (305)
- March 2025 (319)
- February 2025 (234)
-
Categories
- 1
- 1 NUCLEAR ISSUES
- business and costs
- climate change
- culture and arts
- ENERGY
- environment
- health
- history
- indigenous issues
- Legal
- marketing of nuclear
- media
- opposition to nuclear
- PERSONAL STORIES
- politics
- politics international
- Religion and ethics
- safety
- secrets,lies and civil liberties
- spinbuster
- technology
- Uranium
- wastes
- weapons and war
- Women
- 2 WORLD
- ACTION
- AFRICA
- Atrocities
- AUSTRALIA
- Christina's notes
- Christina's themes
- culture and arts
- Events
- Fuk 2022
- Fuk 2023
- Fukushima 2017
- Fukushima 2018
- fukushima 2019
- Fukushima 2020
- Fukushima 2021
- general
- global warming
- Humour (God we need it)
- Nuclear
- RARE EARTHS
- Reference
- resources – print
- Resources -audiovicual
- Weekly Newsletter
- World
- World Nuclear
- YouTube
-
RSS
Entries RSS
Comments RSS






Leave a comment