nuclear-news

The News That Matters about the Nuclear Industry Fukushima Chernobyl Mayak Three Mile Island Atomic Testing Radiation Isotope

Small nuclear reactors for military use would be too dangerous – excellent targets for the enemy

In normal operation, they release potentially hazardous quantities of fission products that would be widely distributed by any penetration of the reactor vessel. More worryingly, the resiliency of tri-structural isotropic particles to kinetic impact is questionable: The silicon carbide coating around the fuel material is brittle and may fracture if impacted by munitions.

Further, graphite moderator material, which is used extensively in most mobile power plant cores, is vulnerable to oxidation when exposed to air or water at high temperatures, creating the possibility of a catastrophic graphite fire distributing radioactive ash. Even in the case of intact (non-leaking) fuel fragments being distributed by a strike, the radiological consequences for readiness and effectiveness are dire.

Given these vulnerabilities, sophisticated adversaries seeking to hinder U.S. forces are likely to realize the utility of the reactor as an area-denial target…….. , a reactor strike offers months of exclusion at the cost of only a few well-placed high-explosive warheads, a capability well within reach of even regional adversaries

Even an unsuccessful or minimally damaging attack on a reactor could offer an adversary significant benefits…………..placing these reactors in combat zones introduces nuclear reactors as valid military targets,

MOBILE NUCLEAR POWER REACTORS WON’T SOLVE THE ARMY’S ENERGY PROBLEMS, War on the Rocks, 14 Dec 21, JAKE HECLA  ”………… As China and Russia develop microreactors for propulsion, the U.S. Army is pursuing the ultimate in self-sufficient energy solutions: the capability to field mobile nuclear power plants. In this vision of a nuclearized future, the Army will replace diesel generator banks with microreactors the size of shipping containers for electricity production by the mid-2020s.

…….  the question is whether or not reactors can truly be made suitable for military use. Are they an energy panacea, or will they prove to be high-value targets capable of crippling entire bases with a single strike?

nuclear power program is confidently sprinting into uncharted territory in pursuit of a solution to its growing energy needs and has promised to put power on the grid within three years. However, the Army has not fielded a reactor since the 1960s and has made claims of safety and accident tolerance that contradict a half-century of nuclear industry experience.


The Army appears set to credulously accept industry claims of complete safety that are founded in wishful thinking and characterized by willful circumvention of basic design safety principles……….. 

If deployed without clear-headed understanding of the risks of nuclear power and preparation for significant releases of radioactive material, the Department of Defense risks incurring costs far greater than those of fuel delivery. These risks go far beyond the physical dangers of an attack with radiological consequences. Additionally, the introduction of nuclear power to the battlefield may corrode national security by heightening inter-alliance tensions and familiarizing adversaries with tactics for attacking nuclear infrastructure.

……………………. A Mobile Nuclear Power Plant Is Not Worth the RiskThe U.S. Army’s mobil. e nuclear power plant development program is centered on Project Pele, a truck-and-air-transportable microreactor……….  The design phase of the program will terminate in 2022 with “full power testing feasible by the end of 2023,” an astonishingly short timeline in comparison to commercial reactor systems.

According to its proponents, Project Pele will offer a walk-away-safe, accident-tolerant reactor that uses advanced heat transfer technologies and tri-structural isotropic (more commonly known as TRISO) fuel. To maximize transportability, Project Pele’s reactor designs do not rely on deep burial or concrete castings for protection of the core from kinetic attack but instead use the traditional last line of defense — fuel cladding, a thin protective layer that prevents radioactive products from leaving the fuel — as the barrier to catastrophic radiation release. The total mass limit for the Pele reactor (40 tons, or a bit less than an M1 Abrams) leaves very little room for armor. In response to this, the program manager for Project Pele has presented tri-structural isotropic fuels as nearly invulnerable, stating that the fuel materialis a “real game-changer” and that “even in the case of an attack, [the reactor] is not going to be a significant radiological problem.” In the case of a reactor attack, the program does not “require highly specialized training and equipment for forward area emergency response staff because these locations typically possess only simple emergency response equipment and limited emergency staff.”

These requirements conflict directly with the operational history of tri-structural isotropic fuels, the fundamental physical properties of reactor fuel, and its behavior in extreme environments. While resilient to high temperatures and robust in comparison to conventional reactor fuel, tri-structural isotropic particles are far from invulnerable.

In normal operation, they release potentially hazardous quantities of fission products that would be widely distributed by any penetration of the reactor vessel. More worryingly, the resiliency of tri-structural isotropic particles to kinetic impact is questionable: The silicon carbide coating around the fuel material is brittle and may fracture if impacted by munitions.

Further, graphite moderator material, which is used extensively in most mobile power plant cores, is vulnerable to oxidation when exposed to air or water at high temperatures, creating the possibility of a catastrophic graphite fire distributing radioactive ash. Even in the case of intact (non-leaking) fuel fragments being distributed by a strike, the radiological consequences for readiness and effectiveness are dire.

Given these vulnerabilities, sophisticated adversaries seeking to hinder U.S. forces are likely to realize the utility of the reactor as an area-denial target. In comparison to typical area-denial tactics that require constant use of munitions and can only continue as long as those munitions last, a reactor strike offers months of exclusion at the cost of only a few well-placed high-explosive warheads, a capability well within reach of even regional adversaries, as demonstrated by Iran’s attack on Al Asad air base.
 While these reactors are not intended to be deployed on the front lines of a conflict, and would reside in well-guarded revetments, a major aspect of the rationale for placing these reactors at forward operating bases is their proximity to conflict and the likelihood of attacks on their supply lines. Likewise, the requirements laid out in Pele make it clear that these reactors will not be buried or encased in concrete, as they are intended to be rapidly mobile. The consequences of a reactor strike are serious and deployment of these systems requires both detailed understanding and extensive preparation for the radiological consequences of a strike.

Even assuming that the fuel material does not leak fission products under the thermal and mechanical shock of an attack, direct irradiation from reactor fuel fragments will pose a hazard that cannot be mitigated by defense equipment for chemical, biological, radiological, nuclear, and high yield explosives. The gamma dose rate at 50cm from a pea-size tri-structural isotropic fuel fragment with burnup similar to what would be anticipated at the end of a fuel cycle would impart a near-fatal dose in under an hour. Such fragments could easily settle on or lodge in equipment, as seen in the cleanup effort following Chernobyl, rendering it useless.

It is conceivable that the exclusion area resulting from a successful reactor strike could force large sections of a base to be evacuated for weeks or months due to the external radiation exposure threat alone.

An attack against a mobile nuclear reactor resulting in the release of fission products could pose a contamination hazard that would render materiel useless, even if fuel fragments are successfully located and removed. Should 1 percent of the fuel particles be damaged in a kinetic attack, tens of kilocuries of volatile fission products would be released. Many of these radioisotopes would react with air, water, and soil to create mobile radioactive contamination that would require topsoil removal; disposal of equipment; and extensive, dose-intensive decontamination using caustic agents and media-blasting. As a point of comparison, decontamination of aircraft used in the response at Chernobyl proved so costly that dozens of military helicopters were decommissioned and left to rust at the accident site even as the Soviet Union pursued a campaign in Afghanistan that was heavily reliant on those aircraft.

Even an unsuccessful or minimally damaging attack on a reactor could offer an adversary significant benefits…………..

placing these reactors in combat zones introduces nuclear reactors as valid military targets, which will familiarize adversaries with the tools and tactics needed to attack nuclear infrastructure. Non-state actors may be able to apply their experience attacking military installations to civilian nuclear infrastructure outside of the theater. While reactors deployed in combat zones will be hardened against such attacks, civilian infrastructure cannot be shielded to the same extent. By deploying these systems to the battlefield, the United States may inadvertently help adversaries build a toolkit to export nuclear terror………… https://warontherocks.com/2021/12/mobile-nuclear-power-reactors-wont-solve-the-armys-energy-problems/

December 16, 2021 - Posted by | Reference, Small Modular Nuclear Reactors, USA

No comments yet.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: