Correcting Anti-Renewable Energy Propaganda
Correcting Anti-Renewable Energy Propaganda, Clean Technica B1 By Georg Nitsche, 12 Feb 20, In 1989, pro-nuclear lobbyists claimed that wind power couldn’t even provide 1% of Germany’s electricity. A few years later, pro-nuclear lobbyists ran ads in German newspapers, claiming that renewables wouldn’t be able to meet 4% of German electricity demand.
After the renewable energy revolution took off, in 2015, the pro-nuclear power “Breakthrough Institute” published an article claiming solar would be limited to 10–20% and wind to 25–35% of a power system’s electricity.
In 2017, German (pro-nuclear power) economist Hans-Werner Sinn tweeted that more than 50% wind and solar would hardly be possible. And in 2018, Carnegie Science reported a study claiming that “wind and solar could meet most but not all U.S. electricity needs.” According to one of the authors, their research indicates that “huge amounts of storage” or natural gas would need to supplement solar and wind power.
From a pro-renewable perspective, this is encouraging. The claims about the limits of renewable energy have moved from “not even 1% of electricity” to “most but not all of the electricity.” And yet, the anti-renewables message has always been the same: renewables will lead to a dead end.
In order to underscore their point, anti-renewable energy propagandists now publish incorrect cost figures that claim a fully renewable electric grid would be unaffordable or way more expensive than other options, such as, you guessed it, nuclear power.
MIT Technology Review writes about the “scary price tag” that such a purely renewable grid would come with, calculating $2.5 trillion as a price tag for storage requirements alone — 12 hours of storage. Wood McKenzie also talks about $2.5 trillion, albeit for 24 hours of storage. The “Clean Air task force” puts the cost for a 100% renewable grid in California at an annual $350 billion.
Anti-renewable propagandists need to talk about imaginary high costs of renewables, especially because one of their preferred ways of generating electricity — nuclear power — turns out to be incredibly expensive.
Renewable energy gets cheaper each year, nuclear power gets more expensive each year — how come they still adamantly claim that renewables are not a cost-effective way of decarbonizing?
he answer, of course, is that the studies are flawed. Taking a look at these studies shows that several patterns can be observed in many of these studies. Among these flaws are ridiculous overestimates of storage requirements, overestimates of grid expansion needs, and the insistence on uneconomical strategies of storing electricity, such as insisting on batteries to store several weeks worth of grid electricity consumption.
In order to understand how these studies are flawed, it’s essential to understand how a renewable energy grid actually works, how energy storage works, and what costs you can expect. After that, I will describe the flaws in some of these studies and recalculate a more realistic scenario, especially more realistic cost projections.
How a renewable grid works
A few facts are important to know:
Storage will not be necessary for a long time.
The sun doesn’t always shine, the wind doesn’t always blow — yet most of the time, there is either sun or wind available. For now, storage will not play a role for a long time. Solar and wind power will increase their shares of electricity consumption, and until they reach 80% of electricity consumption, grid expansion, moderate curtailment, and gas-fired backup power plants are the only tools necessary to reach such a high share of renewables.
Backup power plants are cheap.
So, if 80% of the electricity is generated using solar and wind power, the remaining 20% has to be created from backup power plants. According to grid operator PJM’s data, backup power plants cost up to $120,200 per megawatt per year. We can calculate the cost for a worst case scenario: To cover the 769 gigawatts of US peak load, backup power plants would cost $92.5 billion per year. Divided by the 4.18 trillion kilowatt-hours that were consumed in the USA in 2018, that amounts to 2.2 cents per kilowatt-hour.
Nuclear power is expensive and gets more expensive over time.
The newest Lazard figures put nuclear power at 15 cents per kilowatt-hour. In addition, that’s more than the cost figures of the previous years.
Even for 80 percent solar and wind, grid investment costs are moderate.
The NREL estimates that, even if you get 77% of electricity from solar and wind power, the grid will have to be expanded from around 85,000 gigawatt-miles to around 116,000 gigawatt-miles. That’s not even a 50% increase.
Getting more solar and wind power will require overbuilding and curtailment.
One study that is often cited as “proof” of the limits to renewables finds that, actually, even without any storage, overbuilding solar and wind to 1.5 times US consumption could get you 93% solar and wind power in the grid. This is still without any storage at all. To put this into perspective, if you overbuild solar and wind power 1.5 times, and you have an LCOE of 3 cents per kWh (according to BNEF, this is possible for solar and wind by 2030), that gives you a total LCOE of 4.5 cents per kWh (ignoring minor system costs for curtailment), which is still very cheap, and far below the 15 cents per kWh figure for nuclear power.
The remaining 7% could be provided, for example, by burning synthetic methane that’s made from hydrogen and carbon dioxide.
You can make a synthetic gas that’s 100% compatible with the existing gas infrastructure. The process is known as power-to-gas. Electrolysis uses solar and wind electricity to split water into hydrogen and oxygen. In a second step, carbon dioxide, which can be captured from the air (direct air capture) is mixed with the hydrogen. This results in methane, which is 100% compatible with the existing gas grid and the gas-fired power plants. Once this methane is burned, it emits only as much carbon dioxide as was previously captured from the air. The cost for this methane is currently estimated at 20 euro-cents per kWh, but costs have come down in the past and will continue to come down. In Germany, there is already a facility that generates renewable methane and injects it into the gas grid.
There might be other storage options as well in the future.
To store the entire grid for many hours or even days, batteries are too expensive. Yet there are other options under investigation. Siemens is testing a simple concept of first converting the electricity into heat, storing the heat, and later using that heat to drive a steam turbine. Highview Power uses cold air to store electricity and use the expanding, reheating air to drive a turbine. Both companies already built a pilot storage plant.
You can make a synthetic gas that’s 100% compatible with the existing gas infrastructure. The process is known as power-to-gas. Electrolysis uses solar and wind electricity to split water into hydrogen and oxygen. In a second step, carbon dioxide, which can be captured from the air (direct air capture) is mixed with the hydrogen. This results in methane, which is 100% compatible with the existing gas grid and the gas-fired power plants. Once this methane is burned, it emits only as much carbon dioxide as was previously captured from the air. The cost for this methane is currently estimated at 20 euro-cents per kWh, but costs have come down in the past and will continue to come down. In Germany, there is already a facility that generates renewable methane and injects it into the gas grid.
There might be other storage options as well in the future.
To store the entire grid for many hours or even days, batteries are too expensive. Yet there are other options under investigation. Siemens is testing a simple concept of first converting the electricity into heat, storing the heat, and later using that heat to drive a steam turbine. Highview Power uses cold air to store electricity and use the expanding, reheating air to drive a turbine. Both companies already built a pilot storage plant.
Considering these facts, it is possible to make a calculation about how much a purely renewable grid would likely cost, using today’s technology and today’s prices. Whenever anyone claims way higher costs, we should grow suspicious immediately.
Calculating the cost for a purely renewable grid…..
The Clean Air Task Force Study for California…..
The Wood MacKenzie Study…..
The Jenkins–Sepulveda–Sisternes–Lester study……https://cleantechnica.com/2020/02/09/correcting-anti-renewable-energy-propaganda/?fbclid=IwAR07G_227gvA5y6O7IwysRnDigu7uthcElzcXbzny40OxF7gnBXLDHZbZ9w
No comments yet.
-
Archives
- March 2023 (203)
- February 2023 (379)
- January 2023 (388)
- December 2022 (277)
- November 2022 (335)
- October 2022 (363)
- September 2022 (259)
- August 2022 (367)
- July 2022 (368)
- June 2022 (277)
- May 2022 (375)
- April 2022 (377)
-
Categories
- 1
- 1 NUCLEAR ISSUES
- business and costs
- climate change
- culture and arts
- ENERGY
- environment
- health
- history
- indigenous issues
- Legal
- marketing of nuclear
- media
- opposition to nuclear
- PERSONAL STORIES
- politics
- politics international
- Religion and ethics
- safety
- secrets,lies and civil liberties
- spinbuster
- technology
- Uranium
- wastes
- weapons and war
- Women
- 2 WORLD
- ACTION
- AFRICA
- AUSTRALIA
- Christina's notes
- Christina's themes
- culture and arts
- Fuk 2022
- Fuk 2023
- Fukushima 2017
- Fukushima 2018
- fukushima 2019
- Fukushima 2020
- Fukushima 2021
- general
- global warming
- Humour (God we need it)
- Nuclear
- RARE EARTHS
- Reference
- resources – print
- Resources -audiovicual
- World
- World Nuclear
- YouTube
-
RSS
Entries RSS
Comments RSS
Leave a Reply