Debunking James Hansen’s claims in favour of nuclear power

“. . . the genetic effect has no threshold and exposure is not only cumulative in the individual, but in succeeding generations. On this basis, there would be no tolerance dose, but rather an acceptable injury-limit.”[Parker, H.M., Instrument ation and Radiation Protection (March, 1947), Health Physics, 38:957,970, June 1980]
and:
“Even sub-tolerance radiations produce certain biological changes (cosmic rays are supposed to have some biological effects), so tolerance radiation is not what one strives to get but the maximum permissible dose.”[Morgan, K.Z., The Responsibilities of Health Physics, The Scientific Monthly, 93 (August 1946); reprinted in Health Physics 38:949–952, June 1980.]
The question of what percentage of the population can be acceptably damaged came first to the attention of the AEC at a meeting of the Advisory Committee on Biology and Medicine on January 16–19,1957. At this meeting the AEC advisors determined that a 20 percent increase in the rate of bone cancers and birth defects nationwide would be an “acceptable” effect of U.S. nuclear weapons testing activities. These scientists also acknowledged at this time that the long-term genetic effects were totally unknown.
The historical record indicates that prominent radiologists, health physicists, and geneticists of the time recognized even at the outset of America’s atomic power program that any large population exposure to even very minute amounts of ionizing radiation could create lingering public health problems and genetic damage, and these scientists went to some lengths, including sacrificing their own illustrious careers, to express their views publicly. [ long list of references given here]
[ discusses Fukushima]
….. atmospheric physicists should not opine on health physics. There is no dose of radiation below which there is not a negative biological effect. Indeed, there is a “superlinear” ratio of dose to effect at low doses, because doses that do not kill a cell cause genetic damage that is a larger health threat than dead cells, so humans and animals exposed to low doses are at greater health risk than those exposed to higher doses.
While there are hundreds of different radioactive isotopes within a nuclear reactor, the isotope Cesium-137 is easily measured and has become a standard by which to calculate impacts. During the two-day accident, 18 quadrillion becquerels of cesium were released into the Pacific (18 with 15 zeros). A typical abdominal or pelvic CT scan (the most often performed) is 14–18 thousandths of a becquerel, so during the accident the cesium dose to the environment was the same as about 1 quintillion (1 with 18 zeros) CT scans (repeated every second, continuously, for the next 300 to 600 years). Depending on the type of scan and the age and sex of the patient, a single CT scan will produce 1 cancer for 150 to 3300 exposures, or a median risk of 10 cancers per becquerel (or seivert). [table here on original]
By that calculation, the cesium released during the Fukushima accident was capable of causing roughly 10 quadrillion cancers, but with one important difference.
When you receive radiation treatment like a CT-scan it is sudden and one-off. One second. The technician presses the button and it is on and then off. There is no danger from the machine when it is off. When radioactive elements like cesium-137 (and remember that is just one of hundreds of elements in a nuclear reactor) are released to the environment, there is no off-switch. Thus, the cesium released during the Fukushima accident is capable of roughly 10 quadrillion cancers per second. Inhaling or ingesting it can kill a person, a dolphin or a seagull, but then as the individual’s body decomposes after death — as bacteria, worms and fungi eat away the flesh and bone — the isotope goes back into the food chain to strike another individual, and another, and so on. The danger is limited only by the isotope’s half-life — the time it takes to decay to a harmless element, which for cesium-137 is 30.17 years. Scientists generally use 10 or 20 half-lives to bracket safety concerns, so for cesium 137, “safe” levels arrive in 302 to 604 years (around year 2322 to year 2624), admittedly an imperfect measurement since any residue, no matter how microscopic, may still be lethal, as we have known since before the Manhattan Project. Cesium is one of 256 radionuclides released during Fukushima, so we would need to calculate quantities, biological effectiveness, and the decay time of each of those to get the full health picture. Other isotopes in the Fukushima fuel include Uranium-235, with a half-life of 704 million years, and Uranium-238, with a half-life of 4.47 billion years, or longer than the age of the Earth.
At Fukushima, the end of the accident was not the end of the story. In 2013, 30 billion becquerels of cesium-137 were still flowing into the ocean every day from the damaged and leaking reactor cores. That is 300 billion cancer doses per second of man-made cesium added every day, or 109.5 trillion cancer doses per second added every year. To stop this assault on ocean life, and our own, over the next 5 years the owner of the plant constructed more than 1000 tanks to hold contaminated water away from the ocean. In September 2019, the Japanese government announced that more than one million tons were in storage but that space would run out by the summer of 2022 so it planned to begin releasing those billions of bequerels to the ocean again.Swimmers and sailors who plan to compete in open water events at the 2020 Tokyo Olympics might want to think about that, as might any who fish those waters or consume the catch.
What happens to ocean creatures who ingest radionuclides from leaking nuclear power plants is not very different from what happened to John Wayne, his sons and his co-stars. As the isotopes decay within the body of a dolphin or a coral polyp they send microscopic bullets hurling through DNA chains, causing tumors, sicknesses, defective offspring and death for untold generations. The chance that a single mutation will produce a beneficial result are less than one in a million. Radioactivity is, for practical purposes, forever, as we can see just by looking up at our Sun, a benevolent nuclear reactor providing us energy from the relatively safe distance of 93 million miles.
Even that radiation will kill a number of us, but far fewer than would die if, by some devilish plan or panic response, we follow Dr. Hansen’s advice. https://medium.com/@albertbates/john-wayne-squares-off-against-jim-hansen-42a258b2260d
No comments yet.
-
Archives
- January 2021 (230)
- December 2020 (230)
- November 2020 (297)
- October 2020 (392)
- September 2020 (349)
- August 2020 (351)
- July 2020 (281)
- June 2020 (293)
- May 2020 (251)
- April 2020 (273)
- March 2020 (307)
- February 2020 (223)
-
Categories
- 1
- 1 NUCLEAR ISSUES
- business and costs
- climate change
- culture and arts
- ENERGY
- environment
- health
- history
- indigenous issues
- Legal
- marketing of nuclear
- media
- opposition to nuclear
- PERSONAL STORIES
- politics
- politics international
- Religion and ethics
- safety
- secrets,lies and civil liberties
- spinbuster
- technology
- Uranium
- wastes
- weapons and war
- Women
- 2 WORLD
- ACTION
- AFRICA
- AUSTRALIA
- Christina's notes
- Christina's themes
- culture and arts
- Fukushima 2017
- Fukushima 2018
- fukushima 2019
- Fukushima 2020
- Fukushima 2021
- general
- global warming
- Humour (God we need it)
- Nuclear
- RARE EARTHS
- Reference
- resources – print
- Resources -audiovicual
- World
- World Nuclear
- YouTube
-
RSS
Entries RSS
Comments RSS
Leave a Reply