Huge radiation health danger for astronauts going to Mars
Curiosity flew to Mars in a spacecraft that had shielding similar to what astronauts would have on the new crew vehicle being developed by NASA. The detector picked up an average of 1.8 millisieverts of radiation per day. A human being on the surface of the Earth receives only about 3 millisieverts of radiation in an entire year.
“The radiation environment in deep space is several hundred times more intense than it is on Earth, and that’s even inside a shielded spacecraft,”
“The radiation exposure on a trip to Mars would — barring a super-huge solar event — not be lethal. The concerns are mostly about cancer induction (a so-called ‘late effect’) and damage to the central nervous system,”
Space radiation would make Mars mission hazardous WP, By Joel Achenbach, May 30 Of all the hazards facing a human mission to Mars — something NASA and countless space buffs would love to see at some point — one of the hardest to solve is the radiation that saturates interplanetary space. New data, gathered by NASA’s Curiosity rover as it traveled to Mars, have confirmed that interplanetary space is a hostile medium and suggest that engineers need to find a way to speed up space travel significantly if they hope to reduce radiation exposure……
The effects of interplanetary radiation on the human body are not well understood. Until now, scientists had limited information about how much radiation penetrates a spacecraft during an interplanetary journey. But the Curiosity rover, which bristles with instruments, carried along a Radiation Assessment Detector, and it measured the incoming radiation during its 253-day trip to Mars, which began in November 2011.
Curiosity flew to Mars in a spacecraft that had shielding similar to what astronauts would have on the new crew vehicle being developed by NASA. The detector picked up an average of 1.8 millisieverts of radiation per day. A human being on the surface of the Earth receives only about 3 millisieverts of radiation in an entire year.
“The radiation environment in deep space is several hundred times more intense than it is on Earth, and that’s even inside a shielded spacecraft,” said Cary Zeitlin, a physicist at the Southwest Research Institute in Boulder, Colo., and the lead author on the new study.
In a fast-trajectory journey to Mars using existing propulsion, astronauts would travel for about 180 days to the Red Planet and 180 days home. According to the report, such a trip would expose them to a total of 662 millisieverts of radiation during the round-trip journey.
Some space agencies limit astronauts to 1,000 millisieverts during their entire career. NASA’s standard varies from person to person, influenced by age and gender, and it is designed to permit no more than a 3 percent excess risk of death from cancer over the person’s lifetime.
Astronauts would also be exposed to radiation during their stay on Mars (or in orbit around the planet if the mission did not include a landing). So the total radiation exposure during a mission, particularly one lasting about two years, might exceed the official limits set by space agencies.
That does not mean a Mars trip is impossible. The space agencies could decide, for example, that the importance of a Mars mission would justify the waiving of the radiation exposure limit.
“The radiation exposure on a trip to Mars would — barring a super-huge solar event — not be lethal. The concerns are mostly about cancer induction (a so-called ‘late effect’) and damage to the central nervous system,” Zeitlin said by e-mail.
He said better shielding would help but only to a point. Water and other materials that have a lot of hydrogen are excellent at shielding against cosmic rays. But, Zeitlin said, “Even the best shields will only mitigate the problem to a modest degree, maybe 20-25 percent. While that would be worth pursuing, it would not solve the problem entirely.”…. http://www.washingtonpost.com/national/health-science/space-radiation-makes-mars-mission-hazardous/2013/05/30/1acd1542-c94a-11e2-9245-773c0123c027_story.html
No comments yet.
-
Archives
- June 2023 (119)
- May 2023 (344)
- April 2023 (348)
- March 2023 (308)
- February 2023 (379)
- January 2023 (388)
- December 2022 (277)
- November 2022 (335)
- October 2022 (363)
- September 2022 (259)
- August 2022 (367)
- July 2022 (368)
-
Categories
- 1
- 1 NUCLEAR ISSUES
- business and costs
- climate change
- culture and arts
- ENERGY
- environment
- health
- history
- indigenous issues
- Legal
- marketing of nuclear
- media
- opposition to nuclear
- PERSONAL STORIES
- politics
- politics international
- Religion and ethics
- safety
- secrets,lies and civil liberties
- spinbuster
- technology
- Uranium
- wastes
- weapons and war
- Women
- 2 WORLD
- ACTION
- AFRICA
- AUSTRALIA
- Christina's notes
- Christina's themes
- culture and arts
- Fuk 2022
- Fuk 2023
- Fukushima 2017
- Fukushima 2018
- fukushima 2019
- Fukushima 2020
- Fukushima 2021
- general
- global warming
- Humour (God we need it)
- Nuclear
- RARE EARTHS
- Reference
- resources – print
- Resources -audiovicual
- World
- World Nuclear
- YouTube
-
RSS
Entries RSS
Comments RSS
Leave a Reply