nuclear-news

The News That Matters about the Nuclear Industry Fukushima Chernobyl Mayak Three Mile Island Atomic Testing Radiation Isotope

In 10 years – 100% renewable energy is doable

renewable-energy-world-Sm100% Renewable Energy: What We Can Do in 10 Years Yes! Magazine It will take at least three decades to completely leave behind fossil fuels. But we can do it. And the first step is to start with the easy stuff. Richard Heinberg  Feb 22, 2016

If our transition to renewable energy is successful, we will achieve savings in the ongoing energy expenditures needed for economic production. We will be rewarded with a quality of life that is acceptable—and, perhaps, preferable to our current one (even though, for most Americans, material consumption will be scaled back from its current unsustainable level). We will have a much more stable climate than would otherwise be the case. And we will see greatly reduced health and environmental impacts from energy production activities.

But the transition will entail costs—not just money and regulation, but also changes in our behavior and expectations. It will probably take at least three or four decades, and will fundamentally change the way we live.

Nobody knows how to accomplish the transition in detail, because this has never been done before. Most previous energy transitions were driven by opportunity, not policy. And they were usually additive, with new energy resources piling onto old ones (we still use firewood, even though we’ve added coal, hydro, oil, natural gas, and nuclear to the mix).

Since the renewable energy revolution will require trading our currently dominant energy sources (fossil fuels) for alternative ones (mostly wind, solar, hydro, geothermal, and biomass) that have different characteristics, there are likely to be some hefty challenges along the way.

Therefore, it makes sense to start with the low-hanging fruit and with a plan in place, then revise our plan frequently as we gain practical experience. Several organizations have already formulated plans for transitioning to 100 percent renewable energy. David Fridley, staff scientist of the energy analysis program at the Lawrence Berkeley National Laboratory, and I have been working for the past few months to analyze and assess those plans and have a book in the works titled Our Renewable Future. Here’s a very short summary, tailored mostly to the United States, of what we’ve found.

Level One: The Easy Stuff 

Nearly everyone agrees that the easiest way to kick-start the transition would be to replace coal with solar and wind power for electricity generation. That would require building lots of panels and turbines while regulating coal out of existence. Distributed generation and storage (rooftop solar panels with home- or business-scale battery packs) will help. Replacing natural gas will be harder, because gas-fired “peaking” plants are often used to buffer the intermittency of industrial-scale wind and solar inputs to the grid (see Level Two).

Electricity accounts for less than a quarter of all final energy used in the United States. What about the rest of the energy we depend on? Since solar and wind produce electricity, it makes sense to electrify as much of our energy usage as we can. For example, we could heat and cool most buildings with electric air-source heat pumps, replacing natural gas- or oil-fueled furnaces. We could also begin switching out all our gas cooking stoves for electric stoves.

Transportation represents a large swath of energy consumption, and personal automobiles account for most of that. We could reduce oil consumption substantially if we all drove electric cars (replacing 250 million gasoline-fueled automobiles will take time and money, but will eventually result in energy and financial savings). Promoting walking, bicycling, and public transit will take much less time and investment.

Buildings will require substantial retrofitting for energy efficiency (this will again take time and investment, but will offer still more opportunities for savings). Building codes should be strengthened to require net-zero-energy or near-net-zero-energy performance for new construction. More energy-efficient appliances will also help.

The food system is a big energy consumer, with fossil fuels used in the manufacture of fertilizers, food processing, and transportation. We could reduce a lot of that fuel consumption by increasing the market share of organic local foods. While we’re at it, we could begin sequestering enormous amounts of atmospheric carbon in topsoil by promoting farming practices that build soil rather than deplete it—as is being done, for example, in the Marin Carbon Project.

If we got a good start in all these areas, we could achieve at least a 40 percent reduction in carbon emissions in 10 to 20 years.

Level Two: The Harder Stuff……..

Level Three: The Really Hard Stuff

Doing away with the last 20 percent of our current fossil-fuel consumption is going to take still more time, research, and investment—as well as much more behavioral adaptation.

Just one example: We currently use enormous amounts of concrete for all kinds of construction. The crucial ingredient in concrete is cement. Cement-making requires high heat, which could theoretically be supplied by sunlight, electricity, or hydrogen—but that will entail a nearly complete redesign of the process…….. http://www.yesmagazine.org/issues/life-after-oil/100-renewable-energy-what-we-can-do-in-10-years-20160222

 

 

February 29, 2016 - Posted by | renewable, USA

No comments yet.

Leave a comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.