The News That Matters about the Nuclear Industry

PRISM (Power Reactor Innovative Small Module) and MOX much touted, but nuclear waste burial is best

Another option on the table is PRISM. Developed by GE Hitachi (GEH), PRISM is a sodium-cooled fast reactor that uses a metallic fuel alloy of zirconium, uranium, and plutonium. GEH claims PRISM would reduce the plutonium stockpile quicker than MOX and be the most efficient solution for the UK. The problem is, despite being based on established technology, a PRISM reactor has yet to be built, and the UK is understandably a little reluctant to commit in this direction. Seen as something of a gamble, it remains in the running alongside the currently more favoured MOX option.

Amid all the uncertainty, one thing is for sure. Regardless of what decision is taken, a proportion of the plutonium will end up as waste and will need to be safely disposed of.


waste-burialUnlike MOX and PRISM, immobilisation has no prominent industry backers. In comparison to exploiting the plutonium for our energy needs, there is no great fortune to be made from disposing of it safely. But immobilising the entire plutonium stockpile may in fact be a more economically sound approach than reprocessing

Sellafield plutonium a multi-layered problem, The Engineer UK,   6 November 2015 | By Andrew Wade   “……..It takes somewhere in the region of 5-10kg of plutonium to make a nuclear weapon, so 140 tons is a slightly worrying amount to have sitting in a concrete shed in Cumbria. While everyone at the press conference was at pains to point out that there are no major safety concerns with the current storage, it is widely accepted that a long-term plan needs to be formulated. This, however, is where things get tricky. The potential energy of the plutonium if converted to nuclear fuel is massive, but there are several competing technologies vying for endorsement, none of which are well proven as financially viable.

Top of the list – and the government’s current preference – is for some application that uses mixed oxide fuel, or MOX. MOX is made by blending plutonium with natural or depleted uranium to create a fuel that is similar, but not identical, to the low-enriched uranium used in most nuclear plants today. MOX can be – and in several European countries is – used in thermal reactors alongside uranium. But despite past concerns, there is in reality no shortage of uranium today, so no huge need to supplement it with MOX in current reactors. Where MOX could in fact lead to greater efficiencies is in fast reactors, but these are costly and difficult to operate, and would not make economic sense unless the cost of uranium fell.

To complicate matters further, developing MOX is by no means a straightforward process. Continue reading

November 9, 2015 Posted by | Reference, reprocessing, UK, wastes | Leave a comment

Japan’s nuclear reprocessing boondoggle – Monju reactor still in trouble

NRA’s ‘new management’ call for Monju reactor proves divisive, Japan Times, BY  OSAKA, 6 Nov 15,  – Two decades after a sodium leak and fire shut it down and nearly six decades after it was first conceived, the Monju prototype fast-breeder reactor in Tsuruga, Fukui Prefecture, suffered another blow Wednesday when the Nuclear Regulation Authority called for it to be turned over to another operator.

To date, over ¥1 trillion has been poured into Monju — a plant that has never produced commercial electricity. Despite remaining inactive, safety measures alone cost ¥50 million a day.


Anti-nuclear activists have hailed the NRA’s unusually critical language as an important step toward scrapping the reactor, which was supposed to burn plutonium mixed with uranium.

Fukui politicians who heavily support Monju, including the prefecture’s governor and the mayor of Tsuruga, doubt that another operator can be found. They also worry that scrapping it would create local concerns as well as safety issues.

“What does it mean when the NRA says that it can’t leave Monju’s operations to the (government-backed) Japan Atomic Energy Agency? There aren’t any other organizations it can be left to,” Tsuruga Mayor Takanobu Fuchikami told reporters after the decision…….

Monju, conceived in the 1950s, has faced nothing but technical trouble, domestic and international controversies, and scandals.

Originally slated to go live in 1970, monju did not reach criticality until 1994. It was shut down following a December 1995 leak and fire involving liquid sodium. The incident was at that time Japan’s worst nuclear-related accident.

Further delays and scandals meant that by 2005, when Monju was taken over by JAEA after its predecessor organization was disbanded, officials hoped it would be commercially viable by around 2050.

But after it was revealed in 2012 that JAEA had failed to inspect nearly 10,000 reactor components in and after 2010, the NRA ordered Monju not to engage in preparatory work until it was satisfied safety had been improved…..

Activists are urging the government to give up on the project.

“Monju should be permanently shut down. If the Japanese government is capable of immediately and permanently scrapping Monju, we can gain some trust that it intends to have a logical, functional basic energy policy,” said Aileen Mioko Smith, executive director of Kyoto-based anti-nuclear group Green Action. “If it continues the status quo by flogging a horse that has been dead for 20 years, it bodes badly for Japan’s energy future.”

November 7, 2015 Posted by | Japan, reprocessing | Leave a comment

Japan’s Monju nuclear reprocessing reactor, plagued by safety errors, offline for most of 20 years

text-relevantErrors found in safety management of Monju reactor Sep. 3, 2015 Japan’s nuclear regulators have found fresh faults with the safety management of the country’s fast-breeder reactor, which is currently offline. They say they have found thousands of errors in safety classifications of the equipment and devices at the Monju reactor.

The operator of the prototype reactor in Fukui Prefecture, central Japan, has been banned from conducting test runs since 2013 following discoveries of a large number of safety inspection oversights.


The Nuclear Regulation Authority says it has recently found at least 3,000 mistakes with safety classifications of equipment and devices at the reactor during its regular inspections which are conducted 4 times a year. Its officials say, equipment and devices with high importance were, in some cases, classified in lower ranks in the 3-level system, which suggest the operator might have failed to carry out necessary inspections for them.

The errors found recently include those going as far back as 2007. The fact suggests that government inspectors have also overlooked the operator’s mistakes. The operator, Japan Atomic Energy Agency, built the Monju fast-breeder reactor in the early 1990s to reuse the spent nuclear fuel MOX, a mixture of plutonium extracted from spent fuel and uranium.

But it has been offline for most of the period after it underwent a fire from a leak of sodium, the reactor’s coolant, in 1995.
The operator aims to conduct the reactor’s test run by next March. But it is uncertain when the ban by the authority will be lifted. The plant’s director, Kazumi Aoto, says he will take the government’s report seriously. An NRA inspector, Yutaka Miyawaki, says the regulators will try to identify the actual effects of the errors.

September 5, 2015 Posted by | Japan, reprocessing, safety | Leave a comment

Disposal of plutonium; burial is cheaper than MOX processing

MOXFlag-USAflag-UKnuClear news No.77, September 20156. Plutonium Conundrum A US Energy Department-commissioned study, which has been leaked to the Union of Concerned Scientists, concludes that it would be cheaper and far less risky to dispose of 34 metric tons of U.S. surplus plutonium at a federal nuclear waste repository in New Mexico than convert it into mixed-oxide (MOX) fuel for commercial nuclear power plants at the MOX Fuel Fabrication Facility in South Carolina.

The unreleased report describes in detail the delays and massive cost overruns at the half-built MOX facility, located at the federal Savannah River Site. High staff turnover, the need to replace improperly installed equipment, and an antagonistic relationship between the local federal project director and the contractor are only some of the factors undermining the project. The new report also notes that there are “no obvious silver bullets” to reduce the life-cycle cost of the MOX approach.

According to UCS, a better alternative to turning the surplus plutonium into commercial nuclear fuel would be to “downblend” it, a method the Energy Department has already used to dispose of several metric tons of plutonium. It involves diluting the plutonium with an inert, nonradioactive material and then sending it to the nuclear waste site in New Mexico, the Waste Isolation Pilot Plant (WIPP), for burial. The new report’s analysis supports that assessment. …….

The US report is bound to have a negative impact of the UK Government’s preferred management option for its plutonium stockpile which is to convert it into Mixed Oxide (MOX) fuel. (See ‘Slow Progress on Plutonium Stockpiles’ Nuclear News No.76).
Don Hancock of the Albuquerque-based Southwest Information and Research Center, which closely monitors WIPP, also opposes the MOX project. But he’s sceptical about WIPP as a viable alternative and said the Energy Department should review other options, including storing the plutonium at the Savannah River Site or the Pantex Plant near Amarillo, Texas, where thousands of plutonium pits are already warehoused. He said: “The [DoE and] the Union of Concerned Scientists may be confident that WIPP will reopen in a few years, but I don’t see any real basis for that,” Hancock said. “Going from one bad idea to another bad idea is not the solution to this problem.” (3)

August 29, 2015 Posted by | - plutonium, reprocessing | Leave a comment

Disposal of nuclear waste turning out to be half the cost of reprocessing with MOX fuel

MOXDisposal beats MOX in US comparison  21 August 2015

America is reconsidering how it will dispose of 34 tonnes of plutonium as the previous plan involving a MOX plant has been said to be twice as costly as a dilution and disposal option in a leaked Department of Energy (DOE) report.

The plutonium arises from a June 2000 nuclear weapons reduction agreement with Russia under which both countries would put 34 tonnes of plutonium beyond military use. Russia opted to use its plutonium as fuel for fast reactors generating power at Beloyarsk.

The USA, meanwhile, decided to build a mixed-oxide (MOX) nuclear fuel plant at Savannah River, where the plutonium would be mixed with uranium and made into fuel for light-water reactors. The design is similar to Areva’s Melox facility at Marcoule, but modified to handle metal plutonium ‘pits’ from US weapons and their conversion from metal to plutonium oxide. It is this part of the process that has been problematic. Construction started in 2007 with an estimated cost of $4.9 billion but work ran into serious trouble before being ‘zeroed’ in the DOE’s 2014 budget, putting development on ice.

The Union of Concerned Scientists yesterday published what it said was an unreleased DOE report that compared the cost of completing the MOX plant to other options. Use in fast reactors was considered briefly, but with this technology not readily available in the near term, the prime comparison was against a ‘dilution and disposal’ option which would see the plutonium mixed with inert materials and disposed of in the Waste Isolation Pilot Plant, or WIPP, in New Mexico.

Despite being 60% built, the MOX plant still needs some 15 years of construction work, said the leaked report, and then about three years of commissioning. Once in operation the plant would work through the plutonium over about 10 years with this 28-year program to cost $700-800 million per year – a total of $19.6-22.4 billion on top of what has already been spent. Not only is the price tag very high, but the timescale is too long: the report said this would not meet the disposal timeframe agreed with Russia.

The cost of the MOX plant could not be mitigated by income from sales of the MOX fuel because the regulatory process to gain approval to use MOX would be too burdensome for a commercial utility. The report said “it may be unlikely” that even a utility in a regulated market where fuel costs are passed on to consumers would “bear the risk of MOX fuel even if it is free”.

Dilution and disposal would cost $400 million per year, said the report, “over a similar duration” as MOX, working out at close to half the cost. Other advantages for dilution and disposal are that it requires no new facilities to be created or decommissioned after use, although the increase in WIPP disposal means “it may eventually become desirable to explore expansion of WIPP’s capacity” beyond currently legislated limits. This unique geologic disposal facility was said to be of “tremendous value to both DOE and the State of New Mexico”.

August 24, 2015 Posted by | Reference, reprocessing, USA | Leave a comment

Savannah River Site’s MOX project needs $800 million a year

Review: MOX needs $800M a year

Aug 20 2015  A highly-anticipated review of the Savannah River Site’s MOX project states that funding for the project will require up to $800 million a year if MOX is to be successful.

Earlier this year, the Department of Energy commissioned the Red Team, a group led by Thom Mason, the director of the Oak Ridge National Laboratory, to evaluate cost projections and alternatives to the MOX method of plutonium disposition. The method includes the Mixed Oxide Fuel Fabrication Facility under construction at SRS.

The project is part of a nonproliferation agreement with Russia to dispose of 34 metric tons of weapons grade plutonium.

 The review, dated Aug. 13, was delivered to DOE Secretary Ernest Moniz on Monday and states that the current $400 million  funding level for MOX is inadequate.

“The Red Team concluded that if the MOX pathway is to be successful, then annual funding for the whole program would have to increase from the current $400 million per year to $700 to 800 million per year over the next 2-3 years, and then remain at $700 to $800 million until all 34 metric tons are dispositioned,” officials wrote.

The Aiken Standard will have more on the MOX review in Friday’s paper.

August 23, 2015 Posted by | reprocessing, USA | Leave a comment

21 years after shutdown, USA’s Experimental Breeder Nuclear Reactor-II (EBR-II) is entombed

USA’s Experimental Breeder Reactor-II now permanently entombed, World Nuclear News
01 July 2015 
The main clean-up contractor at the US Department of Energy’s (DOE’s) Idaho Site, has entombed an historic nuclear reactor in place and treated the reactor’s remaining sodium coolant….CH2M-WG, Idaho, LLC (CWI) said yesterday that crews with the Decontamination and Decommissioning (D&D) Program recently completed pouring more than 3400 cubic yards of concrete grout into the basement of the Experimental Breeder Reactor-II (EBR-II) building to fill in any remaining void spaces and effectively entomb the reactor.

Workers also removed and treated the last of the sodium coolant from the reactor’s nine heat exchangers. The exchangers were used to cool the liquid metal and direct the steam to a generating turbine to produce electricity when the reactor was operating.

The EBR-II was the basis of the US Integral Fast Reactor (IFR) program…….. The reactor was shut down in 1994 and its fuel was removed and transported to another site facility for safe storage.

The DOE grouted the reactor in place instead of removing it to protect workers from industrial hazards and radiological risks, CWI said. Crews filled the reactor vessel with grout over two years ago and recently completed the remainder of grouting at the facility under CWI’s contract.

July 18, 2015 Posted by | decommission reactor, Reference, reprocessing, USA | Leave a comment

Japan will now allow India to reprocess spent nuclear fuel from Japanese-made reactors

Japan eases fuel rules for India nuclear deal, Japan Times  KYODO, JUN 19, 2015 Japan has given in to India’s demand that it be allowed to reprocess spent nuclear fuel from Japanese-made reactors, negotiation sources said, marking a major shift in Japan’s stance against proliferation.

India, a nuclear power that conducted its first weapons test in 1974 using reprocessed plutonium, has not joined the Nuclear Non-Proliferation Treaty.

Japan has been seeking measures to guarantee India will not divert extracted plutonium — which could be used to build nuclear weapons — for military use, but no agreement has been reached on the issue, the sources said Thursday…..

June 20, 2015 Posted by | India, Japan, politics international, reprocessing | Leave a comment

The deceptive hype about nuclear reprocessing

Nuclear Reprocessing Pay more, risk more, get little,
Bulletin of the Atomic Scientists 21 May 15  Hui Zhang
 Lately, advocates for fast neutron reactors have been arguing that breeders and reprocessing can reduce the long-term hazards associated with burial of high-level waste. But these long-term benefits are offset by short-term risks and costs.


For example, breeder advocates argue that the risks surrounding leakage in geological repositories could be reduced if all the long-lived isotopes of plutonium and other transuranics contained in spent fuel were transmuted (or fissioned), thus significantly reducing the doses of radioactivity that could escape due to any leakage. But studies show that long-lived fission and activation products in spent fuel—not isotopes that could be fissioned through breeders and reprocessing—dominate the radioactivity doses that leakage could release.

Plutonium, in fact, is quite insoluble in deep underground water. So, reprocessing delivers no obvious long-term benefits in reducing leaked doses of radioactivity—but it does involve routine releases of long-lived radioactive gases from spent fuel. Reprocessing also increases the risk that tanks for high-level liquid waste might explode.

(In a similar vein, advocates for fast neutron reactors argue that reprocessing, by reducing the need to mine uranium, can reduce human radiation exposure. But any such benefit is canceled out because plutonium reprocessing and recycling themselves expose workers and the public to radiation. In short, the net effects may well be negative.)

Meanwhile, all reprocessing and fast neutron reactor programs currently under consideration significantly increase the economic costs of nuclear energy. This means that nuclear decision makers must choose between achieving rather insignificant reductions in the long-term hazards associated with nuclear waste—and achieving short-term gains in the areas of safety, security, human health, and the environment.

The choice seems rather clear-cut. The US National Academy of Sciences concluded in 1996, based on a review of the costs and benefits of reprocessing and fast neutron reactor programs, that “none of the dose reductions seem large enough to warrant the expense and additional operational risk of transmutation.” That assessment remains valid today…….

May 22, 2015 Posted by | 2 WORLD, Reference, reprocessing | Leave a comment

Areva’s nuclear fuel reprocessing plant in La Hague in crisis- shunned by clients

areva-medusa1Crisis for Areva’s La Hague plant as clients shun nuclear, News Daily  May 6, 2015 EMMANUEL JARRY FOR REUTERS BEAUMONT-HAGUE, France – Areva’s nuclear fuel reprocessing plant in La Hague needs to cut costs as its international customers disappear following the Fukushima disaster, and its sole remaining big customer, fellow state-owned French utility EDF, pressures it to cut prices.

Located at the westernmost tip of Normandy, La Hague reprocesses spent nuclear fuel for reuse in nuclear reactors and is a key part in Areva’s production chain, which spans uranium mining to fuel recycling.

Its valuation and outlook are crucial for the troubled French nuclear group, which is racing to find an equity parter after four years of losses have virtually wiped out its capital……….

One of the world’s biggest nuclear waste storage facilities, La Hague’s four pools hold the equivalent of about 50 reactor cores under four meters of water.

Protected by 1.5 meter thick anti-radiation concrete walls, employees in space suits cut up spent nuclear fuel rods, extract uranium and about one percent of plutonium, and melt the remaining waste into glass for eventual deep storage.

Areva says reprocessing reduces natural uranium needs by 25 percent but opponents say that separating plutonium from spent nuclear fuel increases the risk of nuclear proliferation.

The United States does not reprocess its nuclear fuel, but Britain has a large reprocessing plant in Sellafield. A planned recycling plant in Rokkasho, Japan – modeled on La Hague – has been plagued by problems and is years behind schedule.

Since the 2011 nuclear disaster in Fukushima, Areva’s reprocessing unit has lost nearly all of its international customers.

The company’s “back-end” sales – which include reprocessing, logistics and decommissioning – have fallen to 1.53 billion euros in 2014, 18 percent of Areva’s turnover, from 2 billion euros, 30 percent of nuclear revenue, in 2004.


In the past decades, more than 32,000 tonnes of spent nuclear fuel has been reprocessed at La Hague, of which nearly 70 percent for EDF, 17 percent for German utilities, nine percent for Japanese utilities and the rest for Swiss, Belgian, Dutch and Italian clients.

This year, La Hague expects to treat 1,205 tonnes of spent fuel, of which just 25 tonnes will come from abroad. That leaves Areva with EDF virtually as its sole customer, and although both firms are state-owned – Areva 87 percent, EDF 85 percent – EDF has played hardball in contract negotiations.

La Hague extracts plutonium from used nuclear fuel, which it then sends to Areva’s Melox plant in southeast France, which produces MOX fuel – a mixture of plutonium and spent uranium – for 22 (soon 24) of EDF’s 58 reactors.

The arrival of new management at both companies since the start of the year has ended years of hostility between France’s two nuclear champions, but a 6.5 billion euro contract to treat and recycle 1,100 tonnes per year of EDF’s spent fuel for the 2013-2020 period has still not been signed…………

May 8, 2015 Posted by | business and costs, France, reprocessing | Leave a comment

Cheap, efficient deep bore waste disposal would abort nuclear reprocessing

successfully developing deep-hole disposal techniques would be a great development for society

it could be devastating for next-generation nuclear developers attempting to utilize existing used nuclear fuel stockpiles

highly-recommendedWhy Sending Nuclear Waste to the Center of the Earth is Bad News for General Electric,Motley Fool  By Maxx Chatsko   April 30, 2015 “………the U.S. Department of Energy is set to experiment with a technique to dispose of nuclear wastes by drilling 3-mile boreholes into the Earth’s crust and then, well, dropping radioactive materials into their geological tombs. For good


………Fergus Gibb, the technique’s pioneer, told The Engineer that each bore hole, measuring roughly 3 miles deep and 2 feet wide, would cost just a few tens of millions of dollars to drill. …

Gibb said about six boreholes would be sufficient to store all of the United Kingdom’s existing high-level wastes and would take just five years to drill, fill, and seal. That last part is a bit trickier, although the processes have been studied, and solutions have been developed or are in the works. You can read the details on your own…..

Continue reading

May 2, 2015 Posted by | 2 WORLD, Reference, reprocessing, wastes | Leave a comment

Why China should avoid the doubtful dream of commercial nuclear reprocessing

Nuclear-marketing-continuesflag-ChinaReprocessing in China: A long, risky journey, Bulletin of the Atomic Scientists, April 15  Hui Zhang“………Should China continue pursuing its plans for fast breeder reactors and commercialized reprocessing? Good reasons exist for avoiding this course of action. First, because most of China’s power reactors are newly built, Beijing will face little pressure over the next two decades to reduce its spent fuel burden. And spent fuel can be stored safely, at low cost, in dry casks—or disposed of safely in a deep geological repository.

Second, China faces no shortage of uranium resources for the foreseeable future. The nation’s identified resources more than tripled between 2003 and 2012, to 265,500 metric tons from 77,000 metric tons. China’s potential uranium reserves amount to more than 2 million tons. Beijing in recent times has also secured huge overseas uranium resources—about three times as large as its own identified uranium reserves. More such reserves could easily be added.

In any event, the cost of uranium accounts for only a small percentage of the cost of power that reactors generate. Simply put, the cost of uranium will not increase in the foreseeable future to levels that would justify the cost of reprocessing and breeder reactors. To the extent that China is concerned about potential disruptions in its uranium supply, it could easily and inexpensively establish a “strategic” uranium stockpile.

China should carefully examine the experiences of nations that have launched large reprocessing programs and built demonstration breeder reactors in the expectation that the commercialization of these reactors would follow. Commercialization did not follow in those countries—but huge expenses were incurred for cleaning up reprocessing sites and disposing of separated plutonium. For China, there is no urgent need to go down this risky road.

Plutonium recycling is much more expensive, and much less safe and secure, than operating light water reactors with a once-through fuel cycle. As for nuclear waste, dry cask storage is a safe, flexible, and low-cost option that can postpone for decades the need either to reprocess spent fuel or to dispose of it directly—allowing time for technology to develop. China has no convincing rationale for rushing to build commercial-scale reprocessing facilities or plutonium breeder reactors.

April 13, 2015 Posted by | China, Reference, reprocessing | Leave a comment

Nuclear reprocessing has NOT gone according to plan, in China

Nuclear-marketing-continuesReprocessing in China: A long, risky journey, Bulletin of the Atomic Scientists,  Hui Zhang , April 15  Since 1983, a closed fuel cycle has been an official element of China’s nuclear energy policy. According to proponents, plutonium reprocessing and breeder reactors will allow full utilization of China’s uranium resources, drastically reduce the volume of radioactive waste that must be stored in an underground repository, and establish a way to dispense with the spent fuel accumulating in China’s reactor pools.

But Beijing’s attempts to develop commercially viable reprocessing facilities and breeder reactors have been afflicted with technological difficulties, serious delays, and cost overruns. At this point—especially taking into account China’s ample uranium resources and its easy access to additional resources abroad—it appears very doubtful that reprocessing and fast reactors are the proper way forward for China’s nuclear energy sector.

Not according to plan………..

highly-recommendedflag-ChinaParallel with development of the pilot reprocessing plant, China has been working to establish commercially viable plutonium breeder reactors. According to a plan in place until 2013, development of breeder reactors was to be a three-stage process. The first stage was to complete a project known as the China Experimental Fast Reactor. The second stage would involve building, by about 2020, a few demonstration fast reactors. Finally, commercialized fast reactors would be deployed around 2030. Progress always ran far behind schedule.

The China Experimental Fast Reactor is a sodium-cooled experimental fast reactor using technology developed for Russia’s BN-600 reactor. The project, with a planned capacity of 20 megawatts, was approved in 1995. Construction began in 2000. As with the pilot reprocessing plant, the experimental fast reactor encountered many difficulties during construction. Capital cost estimates had to adjusted twice, with each estimate double the previous one. The reactor went critical in July 2010 and, by July 2011, 40 percent of its full power was incorporated into the grid. The reactor, however, was online for only 26 hours during the remainder of 2011, and it produced the equivalent of just one full power-hour. Not until December 2014 did the reactor manage to operate at full capacity for 72 hours. So 19 years passed between project approval and operation at full capacity.

As for the second stage of the pre-2013 plan, CNNC in 2009 signed an agreement with Russia’s Rosatom to jointly construct two copies of Russia’s BN-800 fast neutron reactor in China. But Beijing has not officially approved the project. As with the French reprocessing plant, Chinese experts complain that Russia is demanding too high a price. It is not clear when or if the project will go forward. Instead, CNNC in 2013 began focusing on the development of the indigenous 600-megawatt China Fast Reactor (CFR-600). The start of construction is envisioned for 2017, with operations to commence in 2023—but the government has not approved the project yet.

Experts from CNNC have also, since 2013, urged the development of China’s first commercial fast reactor—a 1,000-megawatt reactor based on experience gained from the CFR-600. But CNNC expert Gu Zhongmao—an advocate of the closed fuel cycle—said at a recent workshop on nuclear energy in East Asia that “China needs at least another 20 to 30 years of effort before commercialization of fast reactor energy systems, and there are so many uncertainties ahead. It is beyond our ability to draw a clear picture 20 years ahead.”………….


April 13, 2015 Posted by | China, Reference, reprocessing | Leave a comment

Will Energy Secretary Moniz benefit France in MOX nuclear boondoggle deal? Or make AREVA accountable?

areva-medusa1$30+billion Plutonium (Pu) Fuel Project, Good for France; Bad for America: AREVA-MOX Ça Pue! Pe-yoo!  Minimg Awareness, 5 Apr 15 [Recall that Areva is 89.9% French State owned and would be long gone if it weren’t for French taxpayers keeping it afloat. Furthermore, Areva has been under police investigation for years in France due to what is known as the Uramin scandal. After the French State the largest shareholder is Kuwait (Kuwait Investment Authority at 4.8%.]

From Savannah River Site Watch:
Now, we’re being told the real reason for continuing construction of the $12.7 MOX plant at SRS – “it’s good for France!” Part of DOE’s foreign aid program fostered by Senator MOX….
French ambassador impressed with MOX
Aiken Standard, March 17, 2015,

We all know that with the gracious assistance of big-spender Senator Lindsey Graham that the bankrupt company AREVA has thrived on the transfer of US tax payer money into their coffers and are getting desperate as their plans for reprocessing of commercial spent fuel in the US have gone down the drain.

“We want to save the jobs in South Carolina because it’s good for the state, he (Wilson) believes it’s good for the U.S. and to me, it’s good for France,” Araud said. (Gerard Araud, France’s Ambassador to the United States)

MOX“The MOX facility is being designed by AREVA, a French company that is also the parent company to the MOX contractor, CB&I-AREVA MOX Services. Gilles Rousseau, the chief operating officer for the contractor, expressed his gratitude for having Araud on site.

Business at its Ugly Usual at DOE: As of April 4, 2015, there is No Accountability to the Tax-Paying Public for the U.S. DOE’s Grossly Mismanaged $30+-billion Plutonium Fuel (MOX) Project, a Textbook Case of Big Government’s Inability to Manage a Costly, Complex Project. When will Secretary of Energy Moniz and Congress act to hold those responsible accountable?

As DOE spins out of control in its management of large projects, the MOX coverup drags on and on and on. When will there be any accountability for the failed MOX project?

Moniz,-ErnestSRS Watch requested in a letter hand delivered to US Secretary of Energy Ernest Moniz on July 29, 2014 that he “Take immediate steps to hold managers in DOE, NNSA and Shaw AREVA MOX Services accountable for the massive cost overruns and schedule delays associated with MOX project.”.

Will Secretary Moniz act responsibly and fulfill his obligations as a public servant? Will he hold specific individuals accountable and make sure that their glaringly inadequate abilities in managing the MOX boondoggle are not used elsewhere in DOE? Let us know who you think must be held accountable: https:// ………


April 6, 2015 Posted by | Reference, reprocessing, USA | Leave a comment

Recycling of nuclear fuel is more expensive than dry cask storage of nuclear wastes

text-relevantThe High and Hidden Costs of Nuclear Power  POLICY August & September 2010, No. 162 Review By Henry Sokolski…….Discouraging the use of government financial incentives to promote commercial nuclear power. This recommendation was made by the Congressional Commission on the Prevention of Weapons of Mass Destruction Proliferation and Terrorism. It would clearly include discouraging new, additional federal loan guarantees for nuclear fuel or power plant construction of the type now being proposed by President Obama and the nuclear industry. ………
Today, the lowest cost interim solution to storing spent fuel (good for 50 to several hundred years) is dry cask storage, above ground, at reactor sites. Recycling spent fuel, on the other hand, is not only more expensive, but runs much greater proliferation, terrorism, and nuclear theft risks.
 For these reasons, President Bush in 2004, the iaea in 2005, and the bipartisan U.S. Congressional Commission on the Prevention of Weapons of Mass Destruction Proliferation and Terrorism in 2008 all called for the imposition of a moratorium on commercial reprocessing. This reflects economic common sense. Unfortunately, in many countries, full employment, development of nuclear weapons options, and other political or military concerns often override straightforward cost-benefit analysis.
In the U.S., this tendency can be avoided by having the nuclear utilities themselves assume a significant portion of the costs of nuclear waste management and reactor site decommissioning. This would require changing the law in the U.S., which stipulates that all of the costs of final spent fuel storage are to be paid for by off-budget federal user fees. …….

April 1, 2015 Posted by | reprocessing | Leave a comment


Get every new post delivered to your Inbox.

Join 1,250 other followers